Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America.
McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America.
J Mol Cell Cardiol. 2024 Feb;187:101-117. doi: 10.1016/j.yjmcc.2023.12.003. Epub 2024 Feb 6.
The sympathetic nervous system regulates numerous critical aspects of mitochondrial function in the heart through activation of adrenergic receptors (ARs) on cardiomyocytes. Mounting evidence suggests that α1-ARs, particularly the α1A subtype, are cardioprotective and may mitigate the deleterious effects of chronic β-AR activation by shared ligands. The mechanisms underlying these adaptive effects remain unclear. Here, we tested the hypothesis that α1A-ARs adaptively regulate cardiomyocyte oxidative metabolism in both the uninjured and infarcted heart.
We used high resolution respirometry, fatty acid oxidation (FAO) enzyme assays, substrate-specific electron transport chain (ETC) enzyme assays, transmission electron microscopy (TEM) and proteomics to characterize mitochondrial function comprehensively in the uninjured hearts of wild type and α1A-AR knockout mice and defined the effects of chronic β-AR activation and myocardial infarction on selected mitochondrial functions.
We found that isolated cardiac mitochondria from α1A-KO mice had deficits in fatty acid-dependent respiration, FAO, and ETC enzyme activity. TEM revealed abnormalities of mitochondrial morphology characteristic of these functional deficits. The selective α1A-AR agonist A61603 enhanced fatty-acid dependent respiration, fatty acid oxidation, and ETC enzyme activity in isolated cardiac mitochondria. The β-AR agonist isoproterenol enhanced oxidative stress in vitro and this adverse effect was mitigated by A61603. A61603 enhanced ETC Complex I activity and protected contractile function following myocardial infarction.
Collectively, these novel findings position α1A-ARs as critical regulators of cardiomyocyte metabolism in the basal state and suggest that metabolic mechanisms may underlie the protective effects of α1A-AR activation in the failing heart.
通过激活心肌细胞上的肾上腺素能受体(AR),交感神经系统调节心脏中线粒体功能的许多关键方面。越来越多的证据表明,α1-AR,特别是α1A 亚型,具有心脏保护作用,并可能通过共享配体减轻慢性β-AR 激活的有害作用。这些适应性效应的机制尚不清楚。在这里,我们测试了以下假设:α1A-AR 适应性调节未受损和梗死心脏中的心肌细胞氧化代谢。
我们使用高分辨率呼吸测量法、脂肪酸氧化(FAO)酶测定法、底物特异性电子传递链(ETC)酶测定法、透射电子显微镜(TEM)和蛋白质组学全面描述野生型和α1A-AR 敲除小鼠未受损心脏中的线粒体功能,并定义慢性β-AR 激活和心肌梗死对选定线粒体功能的影响。
我们发现,来自α1A-KO 小鼠的分离心脏线粒体在脂肪酸依赖性呼吸、FAO 和 ETC 酶活性方面存在缺陷。TEM 显示了这些功能缺陷特征的线粒体形态异常。选择性α1A-AR 激动剂 A61603 增强了分离心脏线粒体中的脂肪酸依赖性呼吸、脂肪酸氧化和 ETC 酶活性。β-AR 激动剂异丙肾上腺素增强了体外氧化应激,而 A61603 减轻了这种不利影响。A61603 增强了 ETC 复合物 I 的活性,并在心肌梗死后保护收缩功能。
总的来说,这些新发现将α1A-AR 定位为基础状态下心肌细胞代谢的关键调节剂,并表明代谢机制可能是α1A-AR 激活在衰竭心脏中发挥保护作用的基础。