Podrez E A, Schmitt D, Hoff H F, Hazen S L
Department of Cell Biology, and Department of Cardiology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
J Clin Invest. 1999 Jun;103(11):1547-60. doi: 10.1172/JCI5549.
Oxidized LDL is implicated in atherosclerosis; however, the pathways that convert LDL into an atherogenic form in vivo are not established. Production of reactive nitrogen species may be one important pathway, since LDL recovered from human atherosclerotic aorta is enriched in nitrotyrosine. We now report that reactive nitrogen species generated by the MPO-H2O2-NO2- system of monocytes convert LDL into a form (NO2-LDL) that is avidly taken up and degraded by macrophages, leading to massive cholesterol deposition and foam cell formation, essential steps in lesion development. Incubation of LDL with isolated MPO, an H2O2-generating system, and nitrite (NO2-)-- a major end-product of NO metabolism--resulted in nitration of apolipoprotein B 100 tyrosyl residues and initiation of LDL lipid peroxidation. The time course of LDL protein nitration and lipid peroxidation paralleled the acquisition of high-affinity, concentration-dependent, and saturable binding of NO2-LDL to human monocyte-derived macrophages and mouse peritoneal macrophages. LDL modification and conversion into a high-uptake form occurred in the absence of free metal ions, required NO2-, occurred at physiological levels of Cl-, and was inhibited by heme poisons, catalase, and BHT. Macrophage binding of NO2-LDL was specific and mediated by neither the LDL receptor nor the scavenger receptor class A type I. Exposure of macrophages to NO2-LDL promoted cholesteryl ester synthesis, intracellular cholesterol and cholesteryl ester accumulation, and foam cell formation. Collectively, these results identify MPO-generated reactive nitrogen species as a physiologically plausible pathway for converting LDL into an atherogenic form.
氧化型低密度脂蛋白(Oxidized LDL)与动脉粥样硬化有关;然而,在体内将低密度脂蛋白转化为致动脉粥样硬化形式的途径尚未明确。活性氮物质的产生可能是一条重要途径,因为从人类动脉粥样硬化主动脉中回收的低密度脂蛋白富含硝基酪氨酸。我们现在报告,单核细胞的MPO - H2O2 - NO2 - 系统产生的活性氮物质将低密度脂蛋白转化为一种形式(NO2 - LDL),这种形式能被巨噬细胞大量摄取并降解,导致大量胆固醇沉积和泡沫细胞形成,这是病变发展的关键步骤。将低密度脂蛋白与分离的髓过氧化物酶(MPO)、一个产生H2O2的系统以及亚硝酸盐(NO2 - ,一氧化氮代谢的主要终产物)一起孵育,导致载脂蛋白B 100酪氨酸残基硝化并引发低密度脂蛋白脂质过氧化。低密度脂蛋白蛋白质硝化和脂质过氧化的时间进程与NO2 - LDL与人单核细胞衍生巨噬细胞和小鼠腹腔巨噬细胞的高亲和力、浓度依赖性及饱和性结合的获得情况平行。低密度脂蛋白的修饰和转化为高摄取形式在无游离金属离子的情况下发生,需要NO2 - ,在生理水平的Cl - 存在时发生,并受到血红素毒物、过氧化氢酶和丁基羟基甲苯(BHT)的抑制。巨噬细胞对NO2 - LDL的结合具有特异性,既不是由低密度脂蛋白受体介导,也不是由I型清道夫受体介导。巨噬细胞暴露于NO2 - LDL会促进胆固醇酯合成、细胞内胆固醇和胆固醇酯积累以及泡沫细胞形成。总体而言,这些结果表明髓过氧化物酶产生的活性氮物质是将低密度脂蛋白转化为致动脉粥样硬化形式的一种生理上合理的途径。