Suppr超能文献

用于检测数字化乳腺X线片中微钙化的统计纹理特征

Statistical textural features for detection of microcalcifications in digitized mammograms.

作者信息

Kim J K, Park H W

机构信息

Software Center, Corporate Technical Operations, Samsung Electronics Co., Ltd., Seoul, Korea.

出版信息

IEEE Trans Med Imaging. 1999 Mar;18(3):231-8. doi: 10.1109/42.764896.

Abstract

Clustered microcalcifications on X-ray mammograms are an important sign for early detection of breast cancer. Texture-analysis methods can be applied to detect clustered microcalcifications in digitized mammograms. In this paper, a comparative study of texture-analysis methods is performed for the surrounding region-dependence method, which has been proposed by the authors, and conventional texture-analysis methods, such as the spatial gray-level dependence method, the gray-level run-length method, and the gray-level difference method. Textural features extracted by these methods are exploited to classify regions of interest (ROI's) into positive ROI's containing clustered microcalcifications and negative ROI's containing normal tissues. A three-layer backpropagation neural network is used as a classifier. The results of the neural network for the texture-analysis methods are evaluated by using a receiver operating-characteristics (ROC) analysis. The surrounding region-dependence method is shown to be superior to the conventional texture-analysis methods with respect to classification accuracy and computational complexity.

摘要

乳腺X线摄影中的簇状微钙化是早期发现乳腺癌的重要征象。纹理分析方法可用于检测数字化乳腺X线片中的簇状微钙化。本文对作者提出的周围区域依赖性方法以及传统纹理分析方法(如空间灰度依赖性方法、灰度游程长度方法和灰度差分方法)进行了纹理分析方法的比较研究。利用这些方法提取的纹理特征将感兴趣区域(ROI)分为包含簇状微钙化的阳性ROI和包含正常组织的阴性ROI。使用三层反向传播神经网络作为分类器。通过接收器操作特性(ROC)分析评估神经网络对纹理分析方法的结果。结果表明,周围区域依赖性方法在分类准确性和计算复杂度方面优于传统纹理分析方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验