Suppr超能文献

恶性和良性簇状微钙化:自动特征分析与分类

Malignant and benign clustered microcalcifications: automated feature analysis and classification.

作者信息

Jiang Y, Nishikawa R M, Wolverton D E, Metz C E, Giger M L, Schmidt R A, Vyborny C J, Doi K

机构信息

Department of Radiology, University of Chicago, Illinois 60637, USA.

出版信息

Radiology. 1996 Mar;198(3):671-8. doi: 10.1148/radiology.198.3.8628853.

Abstract

PURPOSE

To develop a method for differentiating malignant from benign clustered microcalcifications in which image features are both extracted and analyzed by a computer.

MATERIALS AND METHODS

One hundred mammograms from 53 patients who had undergone biopsy for suspicious clustered microcalcifications were analyzed by a computer. Eight computer-extracted features of clustered microcalcifications were merged by an artificial neural network. Human input was limited to initial identification of the microcalcifications.

RESULTS

Computer analysis allowed identification of 100% of the patients with breast cancer and 82% of the patients with benign conditions. The accuracy of computer analysis was statistically significantly better than that of five radiologists (P = .03).

CONCLUSION

Quantitative features can be extracted and analyzed by a computer to distinguish malignant from benign clustered microcalcifications. This technique may help radiologists reduce the number of false-positive biopsy findings.

摘要

目的

开发一种通过计算机提取并分析图像特征来区分恶性与良性簇状微钙化的方法。

材料与方法

对53例因可疑簇状微钙化接受活检的患者的100幅乳房X线照片进行计算机分析。通过人工神经网络合并了簇状微钙化的8个计算机提取特征。人工输入仅限于微钙化的初始识别。

结果

计算机分析能够识别出100%的乳腺癌患者和82%的良性疾病患者。计算机分析的准确性在统计学上显著优于5位放射科医生(P = 0.03)。

结论

计算机可以提取并分析定量特征以区分恶性与良性簇状微钙化。这项技术可能有助于放射科医生减少活检假阳性结果的数量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验