Suppr超能文献

用于黄斑玻璃膜疣定量分析的计算机辅助交互式眼底图像处理

Computer-assisted, interactive fundus image processing for macular drusen quantitation.

作者信息

Shin D S, Javornik N B, Berger J W

机构信息

Computer Vision Laboratory, Scheie Eye Institute, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.

出版信息

Ophthalmology. 1999 Jun;106(6):1119-25. doi: 10.1016/S0161-6420(99)90257-9.

Abstract

PURPOSE

To design and validate a software package to quantitate the area subtended by drusen in color fundus photographs for the conduct of efficient, accurate clinical trials in age-related macular degeneration.

DESIGN

Algorithm and software development. Comparisons with manual methodologies.

PARTICIPANTS

Evaluation and testing on color fundus photographs from patient records and from eyes enrolled in the Choroidal Neovascularization Prevention Trial.

METHODS

Fundus photographs of eyes with drusen were digitized. The green channel was selected for maximum contrast and preprocessed with filtering and shade correction to minimize noise, improve contrast, and correct for illumination and background inhomogeneities. Local thresholding and region-growing algorithms identified drusen. Multiple levels of supervision were incorporated to maximize robustness, accuracy, and validity. Validation studies compared computer-assisted with manual grading by an experienced grader. Intraclass correlation coefficients were calculated as a measure of the concordance between manual and computer-assisted fundus gradings.

MAIN OUTCOME MEASURES

Drusen area and concordance with manual grading.

RESULTS

Automated supervised image analysis offers extreme robustness and accuracy. Most images were segmented with little or no supervision, with processing times on the order of 5 seconds. More complicated images required supervision and a total analysis time varying from 20 seconds to 5 minutes, with most of this time devoted to inspection and comparison. Interactive image processing affords arbitrarily close concordance with manual drusen identification, with calculated intraclass correlation coefficients of 0.92 and 0.93 for comparison of manual with automated, supervised grading by two observers.

CONCLUSIONS

Automated supervised fundus image analysis is an efficient, robust, valid technique for drusen quantitation from color fundus photographs. This approach should prove useful in the conduct of efficient accurate clinical trials for age-related macular degeneration.

摘要

目的

设计并验证一款软件包,用于定量分析彩色眼底照片中玻璃膜疣所占据的面积,以便在年龄相关性黄斑变性的研究中开展高效、准确的临床试验。

设计

算法与软件开发。与手动方法进行比较。

参与者

对来自患者病历以及参加脉络膜新生血管预防试验的受试者眼部的彩色眼底照片进行评估和测试。

方法

对存在玻璃膜疣的眼部的眼底照片进行数字化处理。选择绿色通道以获取最大对比度,并通过滤波和阴影校正进行预处理,以尽量减少噪声、提高对比度,并校正光照和背景不均匀性。使用局部阈值处理和区域生长算法识别玻璃膜疣。纳入多级监督以最大化稳健性、准确性和有效性。通过经验丰富的分级人员,将计算机辅助分级与手动分级进行比较的验证研究。计算组内相关系数,作为手动和计算机辅助眼底分级之间一致性的衡量指标。

主要观察指标

玻璃膜疣面积以及与手动分级的一致性。

结果

自动监督图像分析具有极高的稳健性和准确性。大多数图像在几乎无需监督的情况下即可分割,处理时间约为5秒。更复杂的图像需要监督,总分析时间从20秒到5分钟不等,其中大部分时间用于检查和比较。交互式图像处理与手动玻璃膜疣识别具有任意接近的一致性,两位观察者将手动分级与自动监督分级进行比较时,计算出的组内相关系数分别为0.92和0.93。

结论

自动监督眼底图像分析是一种从彩色眼底照片中定量分析玻璃膜疣的高效、稳健且有效的技术。这种方法在年龄相关性黄斑变性的高效准确临床试验中应会证明有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验