Allen C R, Livesay G A, Wong E K, Woo S L
Department of Orthopaedic Surgery, University of Pittsburgh, PA 15213, USA.
Osteoarthritis Cartilage. 1999 Jan;7(1):110-21. doi: 10.1053/joca.1998.0166.
The objective of this study was to study injury and reconstruction of the anterior cruciate ligament (ACL) and their effects on knee osteoarthritis.
This manuscript discusses the function of knee ligaments, including the basic mechanical properties, the structural properties of their respective bone-ligament-bone complexes, as well as their time- and history-dependent viscoelastic characteristics. The in-situ forces in the ACL and its replacement grafts and knee kinematics before and after ACL reconstruction are also examined.
A robotic/universal force-moment sensor (UFS) testing system has been developed which offers a unique method in determining the multiple-degree of freedom knee kinematics and in-situ forces in human cadaveric knees. Under a 110 N anterior tibial load we found at flexion angles of 15 degrees or lower, there was a significantly larger in-situ force in the PL bundle (approximately 75 N) of the ACL as compared to the AM bundle (approximately 35 N)(P < 0.05). We also found that a quadruple semitendinosus and gracilis tendon ACL graft may be better at fully restoring in-situ forces for the whole range of knee flexion when compared to a bone-patellar tendon-bone ACL graft.
The robotic/UFS testing system allows us to determine knee kinematics and the in-situ forces in cadaveric knees in a non-invasive, non-contact manner. Additionally, the ability to reproduce kinematics during testing allows us to evaluate ACL and ACL graft function under external and simulated muscle loading conditions. Finally, we can also examine many of the variables of ACL reconstructions that affect knee kinematics and graft forces including graft tensioning, graft type, graft placement and tibial positioning during graft fixation.
本研究的目的是研究前交叉韧带(ACL)的损伤与重建及其对膝关节骨关节炎的影响。
本文讨论了膝关节韧带的功能,包括其基本力学性能、各自骨-韧带-骨复合体的结构特性,以及它们随时间和历史变化的粘弹性特征。还研究了ACL及其替代移植物中的原位力以及ACL重建前后的膝关节运动学。
已开发出一种机器人/通用力-力矩传感器(UFS)测试系统,该系统提供了一种独特的方法来确定人体尸体膝关节的多自由度运动学和原位力。在110 N的胫骨前负荷下,我们发现在15度或更低的屈曲角度时,ACL后外侧束(PL束)(约75 N)中的原位力明显大于前内侧束(AM束)(约35 N)(P < 0.05)。我们还发现,与骨-髌腱-骨ACL移植物相比,四股半腱肌和股薄肌腱ACL移植物在膝关节全范围屈曲时可能更能完全恢复原位力。
机器人/UFS测试系统使我们能够以非侵入性、非接触的方式确定尸体膝关节的运动学和原位力。此外,在测试过程中再现运动学的能力使我们能够在外部和模拟肌肉负荷条件下评估ACL和ACL移植物的功能。最后,我们还可以研究影响膝关节运动学和移植物力的ACL重建的许多变量,包括移植物张紧、移植物类型、移植物放置以及移植物固定期间的胫骨定位。