Abril N, Margison G P
CRC Section of Genome Damage and Repair, Paterson Institute for Cancer Research, Christie Hospital (NHS) Trust, Manchester M20 4BX, U.K.
Chem Res Toxicol. 1999 Jun;12(6):544-51. doi: 10.1021/tx980250h.
The effect of expression of the DNA repair protein, O6-alkylguanine-DNA alkyltransferase, on the growth inhibitory effects of the dibromoalkanes (DBA) dibromomethane (DBM) and dibromoethane (DBE) was determined in Chinese hamster lung fibroblasts transfected with and expressing high levels of the Escherichia coli alkyltransferase (ATase) genes. These included the ogt gene and complete or truncated versions of the E. coli ada gene encoding either O6-alkylguanine (O6-alkG) or alkylphosphotriester (alkPT) ATase activities. The functional activity of the ATase in these cells was demonstrated by in vitro assay of cell extracts using 3H-methylated DNA as a substrate, and by the protection they provided against the growth inhibitory effects of methylating agents N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and N-methyl-N-nitrosourea (MNU) and the chloroethylating agent 1, 3-bis(2-chloroethyl)-1-nitrosourea (BCNU). However, cells expressing the full length or the O6-alkG ATase region, but not the alkPT ATase region, of Ada were found to be more sensitive to the growth inhibitory effects of the DBA; Ogt expression sensitized cells to DBM but not significantly to DBE. Addition of DBA to cell extracts depleted O6-alkG ATase activity on the methylated DNA substrate, but had no effect on alkPT ATase activity. This suggests that ATase-mediated sensitization of the intact cells may be related to the inactivation of the ATase protein. Addition to the cell culture medium of GSH or buthionine sulfoximine in attempts to augment or deplete cellular levels of GSH had no marked effect on the ATase-mediated sensitization to DBA. This suggests that rather than GSH-mediated DNA damage, the effect may be mediated by a DNA adduct caused by the oxidative metabolic pathway. These observations indicate that expression of ATase may have a detrimental effect on cellular sensitivity to environmentally relevant alkylating agents.
在转染并高表达大肠杆菌烷基转移酶(ATase)基因的中国仓鼠肺成纤维细胞中,测定了DNA修复蛋白O6-烷基鸟嘌呤-DNA烷基转移酶的表达对二溴烷烃(DBA)、二溴甲烷(DBM)和二溴乙烷(DBE)生长抑制作用的影响。这些基因包括ogt基因以及编码O6-烷基鸟嘌呤(O6-alkG)或烷基磷酸三酯(alkPT)ATase活性的大肠杆菌ada基因的完整或截短版本。通过使用3H-甲基化DNA作为底物对细胞提取物进行体外测定,以及通过它们对甲基化剂N-甲基-N'-硝基-N-亚硝基胍(MNNG)和N-甲基-N-亚硝基脲(MNU)以及氯乙基化剂1,3-双(2-氯乙基)-1-亚硝基脲(BCNU)生长抑制作用的保护,证明了这些细胞中ATase的功能活性。然而,发现表达Ada全长或O6-alkG ATase区域而非alkPT ATase区域的细胞对DBA的生长抑制作用更敏感;Ogt表达使细胞对DBM敏感,但对DBE不敏感。将DBA添加到细胞提取物中会消耗甲基化DNA底物上的O6-alkG ATase活性,但对alkPT ATase活性没有影响。这表明ATase介导的完整细胞致敏可能与ATase蛋白的失活有关。尝试通过在细胞培养基中添加谷胱甘肽(GSH)或丁硫氨酸亚砜胺来增加或减少细胞内GSH水平,对ATase介导的对DBA的致敏没有显著影响。这表明该效应可能不是由GSH介导的DNA损伤引起的,而是由氧化代谢途径产生的DNA加合物介导的。这些观察结果表明,ATase的表达可能对细胞对环境相关烷基化剂的敏感性产生不利影响。