Grover L M, Yan C
Department of Physiology, Marshall University School of Medicine, Huntington, West Virginia 25755-9340, USA.
J Neurophysiol. 1999 Jun;81(6):2814-22. doi: 10.1152/jn.1999.81.6.2814.
An N-methyl-D-aspartate (NMDA)-independent form of long-term potentiation (LTP), which depends on postsynaptic, voltage-dependent calcium channels (VDCCs), has been demonstrated in area CA1 of hippocampus. GABA acting at GABAA receptors limits postsynaptic depolarization during LTP induction. Blockade of GABAA receptors should therefore enhance activation of postsynaptic VDCCs and facilitate the induction of this NMDA receptor-independent, VDCC-dependent LTP. In agreement with this hypothesis, pharmacological blockade of GABAA receptors in the in vitro rat hippocampal slice increased the magnitude of LTP resulting from a normally effective, high-frequency (200 Hz) tetanic stimulation protocol. In addition, GABAA receptor blockade allowed a lower frequency (25 Hz) and normally ineffective tetanic stimulation protocol to induce this form of LTP. Intracellular recordings from CA1 pyramidal cells revealed that blocking GABAA receptors during tetanic stimulation allowed greater postsynaptic depolarization, increased the number of postsynaptic action potentials fired during the tetanization, and also increased the duration of synaptically evoked action potentials. To mimic the increased action potential firing observed when GABAA receptors were blocked, we paired 25-Hz antidromic stimulation with 25-Hz orthodromic stimulation. Paired antidromic + orthodromic 25-Hz stimulation induced NMDA receptor-independent LTP, whereas neither antidromic nor orthodromic stimulation alone induced LTP. Increased action potential firing can therefore at least partially account for the facilitation of NMDA receptor-independent LTP caused by blockade of GABAA receptors. This conclusion is consistent with prior studies demonstrating that action potentials are particularly effective stimuli for the gating of VDCCs in CA1 pyramidal cell dendrites.
一种不依赖N-甲基-D-天冬氨酸(NMDA)的长时程增强(LTP)形式已在海马体CA1区得到证实,这种形式依赖于突触后电压依赖性钙通道(VDCCs)。作用于GABAA受体的γ-氨基丁酸(GABA)在LTP诱导过程中限制突触后去极化。因此,阻断GABAA受体应能增强突触后VDCCs的激活,并促进这种不依赖NMDA受体、依赖VDCCs的LTP的诱导。与这一假设一致的是,在体外大鼠海马体切片中对GABAA受体进行药理学阻断,增加了由正常有效的高频(200Hz)强直刺激方案所产生的LTP的幅度。此外,阻断GABAA受体使较低频率(25Hz)且通常无效的强直刺激方案能够诱导这种形式的LTP。从CA1锥体细胞进行的细胞内记录显示,在强直刺激期间阻断GABAA受体可使突触后去极化增强,增加强直刺激期间发放的突触后动作电位的数量,还增加了突触诱发动作电位的持续时间。为了模拟阻断GABAA受体时观察到的动作电位发放增加的情况,我们将25Hz的逆向刺激与25Hz的正向刺激配对。配对的逆向 + 正向25Hz刺激诱导了不依赖NMDA受体的LTP,而单独的逆向刺激或正向刺激均未诱导出LTP。因此,动作电位发放增加至少可以部分解释由阻断GABAA受体所导致的不依赖NMDA受体的LTP的易化作用。这一结论与先前的研究一致,这些研究表明动作电位是CA1锥体细胞树突中VDCCs门控的特别有效的刺激因素。