Suppr超能文献

新皮层中的突触结构和重配置具有时空选择性。

Synaptic configuration and reconfiguration in the neocortex are spatiotemporally selective.

机构信息

Department of Systematic Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.

出版信息

Anat Sci Int. 2024 Jan;99(1):17-33. doi: 10.1007/s12565-023-00743-5. Epub 2023 Oct 14.

Abstract

Brain computation relies on the neural networks. Neurons extend the neurites such as dendrites and axons, and the contacts of these neurites that form chemical synapses are the biological basis of signal transmissions in the central nervous system. Individual neuronal outputs can influence the other neurons within the range of the axonal spread, while the activities of single neurons can be affected by the afferents in their somatodendritic fields. The morphological profile, therefore, binds the functional role each neuron can play. In addition, synaptic connectivity among neurons displays preference based on the characteristics of presynaptic and postsynaptic neurons. Here, the author reviews the "spatial" and "temporal" connection selectivity in the neocortex. The histological description of the neocortical circuitry depends primarily on the classification of cell types, and the development of gene engineering techniques allows the cell type-specific visualization of dendrites and axons as well as somata. Using genetic labeling of particular cell populations combined with immunohistochemistry and imaging at a subcellular spatial resolution, we revealed the "spatial selectivity" of cortical wirings in which synapses are non-uniformly distributed on the subcellular somatodendritic domains in a presynaptic cell type-specific manner. In addition, cortical synaptic dynamics in learning exhibit presynaptic cell type-dependent "temporal selectivity": corticocortical synapses appear only transiently during the learning phase, while learning-induced new thalamocortical synapses persist, indicating that distinct circuits may supervise learning-specific ephemeral synapse and memory-specific immortal synapse formation. The selectivity of spatial configuration and temporal reconfiguration in the neural circuitry may govern diverse functions in the neocortex.

摘要

脑计算依赖于神经网络。神经元延伸出树突和轴突等神经突,这些神经突的接触形成了中枢神经系统信号传递的生物学基础。单个神经元的输出可以影响轴突传播范围内的其他神经元,而单个神经元的活动可以受到其体树突场传入的影响。因此,形态特征将每个神经元可以发挥的功能作用联系起来。此外,神经元之间的突触连接表现出基于突触前和突触后神经元特征的偏好。在这里,作者回顾了新皮层中的“空间”和“时间”连接选择性。新皮层电路的组织学描述主要取决于细胞类型的分类,基因工程技术的发展允许对树突和轴突以及体进行细胞类型特异性可视化。通过对特定细胞群体进行遗传标记,结合免疫组织化学和亚细胞空间分辨率成像,我们揭示了皮质布线的“空间选择性”,其中突触以突触前细胞类型特异性的方式非均匀地分布在亚细胞体树突域上。此外,学习中的皮质突触动力学表现出突触前细胞类型依赖性的“时间选择性”:皮质间突触仅在学习阶段短暂出现,而学习诱导的新丘脑皮质突触持续存在,表明不同的回路可能监督学习特异性短暂突触和记忆特异性永久突触的形成。神经电路中空间结构和时间重构的选择性可能控制新皮层中的多种功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3f1/10771605/f46f6054c898/12565_2023_743_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验