Suppr超能文献

超级明星:一种基于知识的蛋白质相互作用位点识别方法。

SuperStar: a knowledge-based approach for identifying interaction sites in proteins.

作者信息

Verdonk M L, Cole J C, Taylor R

机构信息

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.

出版信息

J Mol Biol. 1999 Jun 18;289(4):1093-108. doi: 10.1006/jmbi.1999.2809.

Abstract

An empirical method for identifying interaction sites in proteins is described and validated. The method is based entirely on experimental information about non-bonded interactions occurring in small-molecule crystal structures. These data are used in the form of scatterplots that show the experimentally observed distribution of one functional group (the "contact group" or "probe") around another. A template molecule (e.g. a protein binding site) is broken down into structure fragments and the scatterplots, showing the distribution of a chosen probe around these structure fragments, are superimposed on the corresponding parts of the template. The scatterplots are then translated into a three-dimensional map that shows the propensity of the probe at different positions around the template molecule. The method is illustrated for l -arabinose-binding protein, complexed with l -arabinose and with d -fucose, and for dihydrofolate reductase complexed with methotrexate. The method is validated on 122 X-ray structures of protein-ligand complexes. For all the binding sites of these proteins, propensity maps are generated for four different probes: a charged NH+3nitrogen, a carbonyl oxygen, a hydroxyl oxygen and a methyl carbon atom. Next, the maps are compared with the experimentally observed positions of ligand atoms of these types. For 74% of these ligand atoms (84% of the solvent-inaccessible ones) the calculated propensity of the matching probe at the experimental positions is higher than expected by chance. For 68% of the atoms (82% of the solvent-inaccessible ones) the propensity of the matching probe is higher than that of the other three probes. These results indicate that the approach generally gives good predictions for protein-ligand interactions. The potential applications of the propensity maps range from an aid in manual docking and structure-based drug design to their use in pharmacophore development.

摘要

本文描述并验证了一种识别蛋白质中相互作用位点的经验方法。该方法完全基于小分子晶体结构中发生的非键相互作用的实验信息。这些数据以散点图的形式使用,散点图展示了一个官能团(“接触基团”或“探针”)在另一个官能团周围的实验观察分布。将模板分子(例如蛋白质结合位点)分解为结构片段,并将展示所选探针在这些结构片段周围分布的散点图叠加到模板的相应部分上。然后将散点图转换为三维图谱,该图谱显示了探针在模板分子周围不同位置的倾向。以与L -阿拉伯糖和D -岩藻糖复合的L -阿拉伯糖结合蛋白以及与甲氨蝶呤复合的二氢叶酸还原酶为例对该方法进行了说明。该方法在122个蛋白质 - 配体复合物的X射线结构上得到了验证。对于这些蛋白质的所有结合位点,针对四种不同的探针生成倾向图谱:带正电荷的NH₃⁺氮、羰基氧、羟基氧和甲基碳原子。接下来,将这些图谱与这些类型配体原子的实验观察位置进行比较。对于这些配体原子中的74%(溶剂不可及的配体原子中的84%),计算得到的匹配探针在实验位置的倾向高于随机预期。对于68%的原子(溶剂不可及的原子中的82%),匹配探针的倾向高于其他三种探针。这些结果表明该方法通常能对蛋白质 - 配体相互作用给出良好的预测。倾向图谱的潜在应用范围从辅助手动对接和基于结构的药物设计到用于药效团开发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验