Hashimoto T, Fujita T, Usuda N, Cook W, Qi C, Peters J M, Gonzalez F J, Yeldandi A V, Rao M S, Reddy J K
Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA.
J Biol Chem. 1999 Jul 2;274(27):19228-36. doi: 10.1074/jbc.274.27.19228.
Fatty acid beta-oxidation occurs in both mitochondria and peroxisomes. Long chain fatty acids are also metabolized by the cytochrome P450 CYP4A omega-oxidation enzymes to toxic dicarboxylic acids (DCAs) that serve as substrates for peroxisomal beta-oxidation. Synthetic peroxisome proliferators interact with peroxisome proliferator activated receptor alpha (PPARalpha) to transcriptionally activate genes that participate in peroxisomal, microsomal, and mitochondrial fatty acid oxidation. Mice lacking PPARalpha (PPARalpha-/-) fail to respond to the inductive effects of peroxisome proliferators, whereas those lacking fatty acyl-CoA oxidase (AOX-/-), the first enzyme of the peroxisomal beta-oxidation system, exhibit extensive microvesicular steatohepatitis, leading to hepatocellular regeneration and massive peroxisome proliferation, implying sustained activation of PPARalpha by natural ligands. We now report that mice nullizygous for both PPARalpha and AOX (PPARalpha-/- AOX-/-) failed to exhibit spontaneous peroxisome proliferation and induction of PPARalpha-regulated genes by biological ligands unmetabolized in the absence of AOX. In AOX-/- mice, the hyperactivity of PPARalpha enhances the severity of steatosis by inducing CYP4A family proteins that generate DCAs and since they are not metabolized in the absence of peroxisomal beta-oxidation, they damage mitochondria leading to steatosis. Blunting of microvesicular steatosis, which is restricted to few liver cells in periportal regions in PPARalpha-/- AOX-/- mice, suggests a role for PPARalpha-induced genes, especially members of CYP4A family, in determining the severity of steatosis in livers with defective peroxisomal beta-oxidation. In age-matched PPARalpha-/- mice, a decrease in constitutive mitochondrial beta-oxidation with intact constitutive peroxisomal beta-oxidation system contributes to large droplet fatty change that is restricted to centrilobular hepatocytes. These data define a critical role for both PPARalpha and AOX in hepatic lipid metabolism and in the pathogenesis of specific fatty liver phenotype.
脂肪酸β-氧化发生在线粒体和过氧化物酶体中。长链脂肪酸也可通过细胞色素P450 CYP4Aω-氧化酶代谢为有毒的二羧酸(DCA),这些二羧酸可作为过氧化物酶体β-氧化的底物。合成的过氧化物酶体增殖剂与过氧化物酶体增殖物激活受体α(PPARα)相互作用,转录激活参与过氧化物酶体、微粒体和线粒体脂肪酸氧化的基因。缺乏PPARα(PPARα-/-)的小鼠对过氧化物酶体增殖剂的诱导作用无反应,而缺乏过氧化物酶体β-氧化系统的第一种酶即脂肪酰辅酶A氧化酶(AOX-/-)的小鼠则表现出广泛的微泡性脂肪性肝炎,导致肝细胞再生和大量过氧化物酶体增殖,这意味着天然配体持续激活PPARα。我们现在报告,同时缺失PPARα和AOX(PPARα-/- AOX-/-)的小鼠未表现出自发性过氧化物酶体增殖,也未被在无AOX时未代谢的生物配体诱导PPARα调节的基因。在AOX-/-小鼠中,PPARα的过度激活通过诱导产生DCA的CYP4A家族蛋白增强了脂肪变性的严重程度,并且由于它们在缺乏过氧化物酶体β-氧化时未被代谢,它们会损伤线粒体导致脂肪变性。PPARα-/- AOX-/-小鼠门静脉周围区域少数肝细胞中微泡性脂肪变性的减轻,表明PPARα诱导的基因,尤其是CYP4A家族成员,在决定过氧化物酶体β-氧化缺陷肝脏中脂肪变性的严重程度方面发挥作用。在年龄匹配的PPARα-/-小鼠中,组成型线粒体β-氧化减少而组成型过氧化物酶体β-氧化系统完整,导致仅局限于中央小叶肝细胞的大滴脂肪变性。这些数据确定了PPARα和AOX在肝脏脂质代谢以及特定脂肪肝表型发病机制中的关键作用。