Martíenz Caro D, Rodríguez García J A, Munguía L
Departamento de Cardiología y Cirugia Cardiovascular, Facultad de Medicina, Universidad de Navarra.
Rev Med Univ Navarra. 1999 Jan-Mar;43(1):29-40.
The heart is the central point for adaptation of the organism to physical exercise because it is the center of the energy support system. Its activity is regulated at three levels; organ, cells and molecular and genetic components. During the development of the heart, the organ adapts in response to chronic and acute overloads by instantaneous functional and chronic changes, leading to a variable degree of cardiac growth. Physical exercise (acute and chronic) is the main example of physiologic overload. The acute response of the heart means a mechanical-hemodynamical and energetic modulation, driving to a final point where oxygen supply fits the increased need. Training, as response to chronic exercise, promotes an increase in energetic capacity (heart rate and stroke volume), structurally reflected in the physiological cardiac hypertrophy. Global functional and structural changes express what is happening at the cellular level. Different stimuli signal through specific receptors and second messengers to the nucleus, regulating gene expression and conditioning structural (size) and functional (contractile) changes. Changes in cellular size explain, by Starling mechanism, the increase in individual contractile strength and in reduction of the ventricular cavity in the systolic period. Other structural changes refer to the interstitium, myocardial vasculature and vascular reactivity. Changes in contractility affect the composition of the contractile elements (isoforms of heavy myosin, light myosin and/or modulatory proteins) and sarcoplasmic Ca2+ regulation, through the increase in Ca2+ flow. Many of the adaptations to chronic exercise studied in vivo in intact heart, isolated heart (Langendorf) or papillary muscle (multicellular preparation), are retained in the cardiomyocyte. Isolated cardiomyocytes can be precisely through the medium, temperature, ionic composition, active substances, etc. Shortening speed without load (Vmax), considered an inotropic index (Sonnenblick) can be measured independently of the initial length. Myocytes shorten against an internal load (restoration force) with viscous and elastic components, although they cannot be loaded externally (stretching is difficult). Cardiomyocyte isolation and maintenance requires strict and controlled conditions. This model offers many possibilities for studying dimensions, contraction-relaxation mechanics, Ca2+ and pH dynamics, beta-adrenergic receptors, electrophysiology, pharmacology, genetics, etc. This kind of studies can deal with normal myocytes or myocytes from trained animals, cardiomyopathies, etc.
心脏是机体适应体育锻炼的核心部位,因为它是能量支持系统的中心。其活动在器官、细胞以及分子和遗传成分三个层面受到调节。在心脏发育过程中,该器官会通过即时的功能变化和慢性变化,对慢性和急性负荷做出反应,从而导致不同程度的心脏生长。体育锻炼(急性和慢性)是生理负荷的主要例子。心脏的急性反应意味着机械血液动力学和能量调节,最终使氧气供应满足增加的需求。作为对慢性运动的反应,训练会促进能量能力(心率和每搏输出量)的增加,在结构上表现为生理性心脏肥大。整体功能和结构变化反映了细胞水平上正在发生的情况。不同的刺激通过特定受体和第二信使向细胞核发出信号,调节基因表达,并决定结构(大小)和功能(收缩)变化。细胞大小的变化通过Starling机制解释了个体收缩力的增加以及收缩期心室腔的缩小。其他结构变化涉及间质、心肌血管系统和血管反应性。收缩性的变化会通过增加钙离子流量,影响收缩元件的组成(重肌球蛋白、轻肌球蛋白和/或调节蛋白的同工型)以及肌浆钙离子调节。许多在完整心脏、离体心脏(Langendorf)或乳头肌(多细胞制剂)中对慢性运动的适应性研究结果,在心肌细胞中也得以保留。离体心肌细胞可以通过培养基、温度、离子组成、活性物质等进行精确调控。无负荷缩短速度(Vmax),被视为一种变力指数(Sonnenblick),可以独立于初始长度进行测量。心肌细胞会克服具有粘性和弹性成分的内部负荷(恢复力)而缩短,尽管它们无法承受外部负荷(拉伸困难)。心肌细胞的分离和维持需要严格且可控的条件。该模型为研究尺寸、收缩 - 舒张力学、钙离子和pH动态、β - 肾上腺素能受体、电生理学、药理学、遗传学等提供了诸多可能性。这类研究可以针对正常心肌细胞或来自训练动物的心肌细胞、心肌病等展开。