Kerschensteiner D, Stocker M
Molekulare Biologie Neuronaler Signale, Max-Planck-Institut für Experimentelle Medizin, D-37075 Göttingen, Germany.
Biophys J. 1999 Jul;77(1):248-57. doi: 10.1016/S0006-3495(99)76886-4.
Modulatory alpha-subunits of Kv channels remain electrically silent after homomeric expression. Their interactions with Kv2 alpha-subunits via the amino-terminal domain promote the assembly of heteromeric functional channels. The kinetic features of these heteromers differ from those of Kv2 homomers, suggesting a distinct role in electrical signaling. This study investigates biophysical properties of channels emerging from the coexpression of Kv2.1 with the modulatory alpha-subunit Kv9.3. Changes relative to homomeric Kv2.1 concern activation, deactivation, inactivation, and recovery from inactivation. A detailed description of Kv2.1/Kv9.3 inactivation is presented. Kv2.1/Kv9.3 heteromers inactivate in a fast and complete fashion from intermediate closed states, but in a slow and incomplete manner from open states. Intermediate closed states of channel gating can be approached through partial activation or deactivation, according to a proposed qualitative model. These transitions are rate-limiting for Kv2.1/Kv9.3 inactivation. Finally, based on the kinetic description, we propose a putative function for Kv2.1/Kv9.3 heteromers in rat heart.
Kv通道的调节性α亚基在同源表达后保持电沉默状态。它们通过氨基末端结构域与Kv2α亚基相互作用,促进异源功能性通道的组装。这些异源二聚体的动力学特征与Kv2同源二聚体不同,表明其在电信号传导中具有独特作用。本研究调查了Kv2.1与调节性α亚基Kv9.3共表达所形成通道的生物物理特性。相对于同源Kv2.1的变化涉及激活、失活、去激活以及从失活状态恢复。文中给出了Kv2.1/Kv9.3失活的详细描述。Kv2.1/Kv9.3异源二聚体从中等关闭状态快速且完全地失活,但从开放状态失活则缓慢且不完全。根据一个提出的定性模型,通道门控的中等关闭状态可通过部分激活或失活来实现。这些转变是Kv2.1/Kv9.3失活的限速步骤。最后,基于动力学描述,我们提出了Kv2.1/Kv9.3异源二聚体在大鼠心脏中的假定功能。