Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
Neurobiol Dis. 2021 Jul;155:105382. doi: 10.1016/j.nbd.2021.105382. Epub 2021 Apr 30.
The unique fast spiking (FS) phenotype of cortical parvalbumin-positive (PV) neurons depends on the expression of multiple subtypes of voltage-gated potassium channels (Kv). PV neurons selectively express Kcns3, the gene encoding Kv9.3 subunits, suggesting that Kcns3 expression is critical for the FS phenotype. KCNS3 expression is lower in PV neurons in the neocortex of subjects with schizophrenia, but the effects of this alteration are unclear, because Kv9.3 subunit function is poorly understood. Therefore, to assess the role of Kv9.3 subunits in PV neuron function, we combined gene expression analyses, computational modeling, and electrophysiology in acute slices from the cortex of Kcns3-deficient mice. Kcns3 mRNA levels were ~ 50% lower in cortical PV neurons from Kcns3-deficient relative to wildtype mice. While silent per se, Kv9.3 subunits are believed to amplify the Kv2.1 current in Kv2.1-Kv9.3 channel complexes. Hence, to assess the consequences of reducing Kv9.3 levels, we simulated the effects of decreasing the Kv2.1-mediated current in a computational model. The FS cell model with reduced Kv2.1 produced spike trains with irregular inter-spike intervals, or stuttering, and greater Na channel inactivation. As in the computational model, PV basket cells (PVBCs) from Kcns3-deficient mice displayed spike trains with strong stuttering, which depressed PVBC firing. Moreover, Kcns3 deficiency impaired the recruitment of PVBC firing at gamma frequency by stimuli mimicking synaptic input observed during cortical UP states. Our data indicate that Kv9.3 subunits are critical for PVBC physiology and suggest that KCNS3 deficiency in schizophrenia could impair PV neuron firing, possibly contributing to deficits in cortical gamma oscillations in the illness.
皮质层 Parvalbumin 阳性(PV)神经元的独特快速尖峰(FS)表型依赖于多种电压门控钾通道(Kv)亚型的表达。PV 神经元选择性表达 Kcns3,该基因编码 Kv9.3 亚基,这表明 Kcns3 的表达对于 FS 表型至关重要。精神分裂症患者大脑新皮层的 PV 神经元中 KCNS3 的表达水平较低,但这种改变的影响尚不清楚,因为 Kv9.3 亚基的功能了解甚少。因此,为了评估 Kv9.3 亚基在 PV 神经元功能中的作用,我们结合基因表达分析、计算建模和急性皮层切片的电生理学,对 Kcns3 缺陷小鼠进行研究。Kcns3 基因在 Kcns3 缺陷型小鼠的皮质层 PV 神经元中的表达水平约为野生型的 50%。尽管 Kv9.3 亚基本身是沉默的,但它们被认为可以在 Kv2.1-Kv9.3 通道复合物中放大 Kv2.1 电流。因此,为了评估降低 Kv9.3 水平的后果,我们在计算模型中模拟了减少 Kv2.1 介导的电流的影响。具有降低 Kv2.1 产生的不规则尖峰间间隔或口吃和更大的 Na 通道失活的 FS 细胞模型。与计算模型一样,Kcns3 缺陷型小鼠的 PV 篮状细胞(PVBC)显示出强烈的口吃尖峰序列,从而抑制了 PVBC 的放电。此外,Kcns3 缺陷会削弱皮质层 UP 状态期间模拟突触输入的刺激对 PVBC 放电的招募。我们的数据表明 Kv9.3 亚基对于 PVBC 生理学至关重要,并表明精神分裂症中的 KCNS3 缺陷可能会损害 PV 神经元的放电,这可能是疾病中皮质层 γ 振荡缺失的原因之一。