Fernández-Real J M, Sanchis D, Ricart W, Casamitjana R, Balada F, Remesar X, Alemany M
Departament de Endocrinología, Hospital Universitario de Girona Dr Josep Trueta, Spain.
Clin Endocrinol (Oxf). 1999 Feb;50(2):253-60. doi: 10.1046/j.1365-2265.1999.00669.x.
The metabolites of steroidal hormones, including sulphate, glucuronide, and fatty acid (FA) ester derivatives, have received little attention, although these steroid derivatives are essential components in the global assessment of steroid metabolism. The study of FA-derivatives could, in obesity, contribute some insights into factors modulating steroid metabolism and their plasma levels. In a recent study we found that, in rats, an oestrone-fatty acid ester (E1-FA) was produced by white adipose tissue and released into lipoproteins in the blood-stream. We have examined whether E1-FA levels correlate with body fat and insulin sensitivity in humans.
A sample of 20 men and 22 women with varying levels of total body fat (mean body mass index (BMI) 29.2 +/- 4.7, range 22.2-35.8 in men; mean BMI 27.6 +/- 6.3, range 16.8-37.9 in women). All participants were healthy.
We measured oestrone fatty acid esters (E1-FA), body fatness, and body fat distribution variables, as well as insulin sensitivity through a frequently sampled intravenous glucose tolerance test. Plasma E1-FA and serum leptin levels were measured by radioimmunoassay.
E1-FA levels strongly correlated with BMI (r = 0.69, P = 0.001 in men; r = 0.75, P < 0.0001, in women) percent body fat (PBF, r = 0.52. P = 0.018 in men; and r = 0.69, P < 0.0001, in women) and with the sum of 4 fat skinfolds (sigma skinfolds). E1-FA level was significantly and positively associated with fasting insulin (r = 0.62, P = 0.003 in men, and r = 0.48, P = 0.023 in women) but not with fasting glucose levels. E1-FA correlated with insulin sensitivity (SI, r = -0.72 in men; and -0.76, in women, both P < 0.0001). In men, E1-FA levels also correlated with systolic blood pressure (r = 0.59, P = 0.01), total triglycerides (r = 0.63, P = 0.003), VLDL-triglycerides (r = 0.62, P = 0.004) and VLDL-cholesterol (r = 0.48, P = 0.03), but not with diastolic blood pressure, serum total or LDL-cholesterol, or total and HDL2 and HDL3 subfractions of HDL cholesterol. After controlling for fat mass, only the correlation between VLDL-triglycerides and E1-FA levels remained significant. In women, E1-FA levels correlated with total triglycerides (r = 0.66, P = 0.001), VLDL-triglycerides (r = 0.65, P = 0.001), VLDL-cholesterol (r = 0.63, P = 0.002), LDL-cholesterol (r = 0.57, P = 0.005) and total and HDL2 and HDL3 subfractions of HDL cholesterol (r = -0.58, -0.48, -0.61, P = 0.004, 0.02 and 0.002, respectively), but not with systolic or diastolic blood pressure or total cholesterol. However, covariance analysis revealed that controlling for the concomitant variation in body fat mass eliminated all these associations. Fasting plasma E1-FA concentration correlated with serum leptin (r = 0.60, P = 0.005 in men; r = 0.75, P = 0.0001, in women). However, these correlations no longer persisted after controlling for fat mass (r = 0.33 and 0.36, P = NS). Stepwise regression analysis models were tested, with E1-FA as the dependent variable, and sigma skinfolds and SI as independent covariables. Both the sigma skinfolds (P = 0.03) and SI (P = 0.01) entered the equation at a statistically significant level in men. Therefore, insulin sensitivity was related to E1-FA independently of fat in men. In women only sigma skinfolds (P = 0.04) entered the regression model at a statistically significantly level. Fifty-seven percent of the variance in plasma E1-FA levels in men, and 50% in women, was accounted for using a regression model that combined these variables.
Oestrone-fatty acid esters circulate in human blood in proportion to body fat, independently of gender. Plasma oestrone-fatty acid ester levels are associated with insulin sensitivity in men, independently of body fat. These findings may widen our perspective on the regulation of insulin action and control of body weight.
甾体激素的代谢产物,包括硫酸盐、葡萄糖醛酸酯和脂肪酸(FA)酯衍生物,尽管这些类固醇衍生物是类固醇代谢整体评估中的重要组成部分,但受到的关注较少。对FA衍生物的研究可能有助于深入了解肥胖状态下调节类固醇代谢及其血浆水平的因素。在最近的一项研究中,我们发现,在大鼠中,白色脂肪组织会产生雌酮脂肪酸酯(E1-FA)并释放到血流中的脂蛋白中。我们研究了人体中E1-FA水平是否与体脂和胰岛素敏感性相关。
选取20名男性和22名女性作为样本,他们的总体脂水平各不相同(男性平均体重指数(BMI)为29.2±4.7,范围为22.2 - 35.8;女性平均BMI为27.6±6.3,范围为16.8 - 37.9)。所有参与者均健康。
通过频繁采样的静脉葡萄糖耐量试验,我们测量了雌酮脂肪酸酯(E1-FA)、体脂率、体脂分布变量以及胰岛素敏感性。血浆E1-FA和血清瘦素水平通过放射免疫分析法测定。
E1-FA水平与BMI(男性r = 0.69,P = 0.001;女性r = 0.75,P < 0.0001)、体脂百分比(PBF,男性r = 0.52,P = 0.018;女性r = 0.69,P < 0.0001)以及4个脂肪褶厚度之和(σ皮肤褶厚度)显著相关。E1-FA水平与空腹胰岛素显著正相关(男性r = 0.62,P = 0.003;女性r = 0.48,P = 0.023),但与空腹血糖水平无关。E1-FA与胰岛素敏感性(SI,男性r = -0.72;女性r = -0.76,P均< 0.0001)相关。在男性中,E1-FA水平还与收缩压(r = 0.59,P = 0.01)、总甘油三酯(r = 0.63,P = 0.003)、极低密度脂蛋白甘油三酯(r = 0.62,P = 0.004)和极低密度脂蛋白胆固醇(r = 0.48,P = 0.03)相关,但与舒张压、血清总胆固醇或低密度脂蛋白胆固醇,以及高密度脂蛋白胆固醇的总胆固醇和HDL2及HDL3亚组分无关。在控制了脂肪量后,只有极低密度脂蛋白甘油三酯与E1-FA水平之间的相关性仍然显著。在女性中,E1-FA水平与总甘油三酯(r = 0.66,P = 0.001)、极低密度脂蛋白甘油三酯(r = 0.65,P = 0.001)、极低密度脂蛋白胆固醇(r = 0.63,P = 0.002)、低密度脂蛋白胆固醇(r = 0.57,P = 0.005)以及高密度脂蛋白胆固醇的总胆固醇和HDL2及HDL3亚组分(r分别为 -0.58、-0.48、-0.61,P = 0.004、0.02和0.002)相关,但与收缩压或舒张压或总胆固醇无关。然而,协方差分析显示,控制体脂量的伴随变化消除了所有这些关联。空腹血浆E1-FA浓度与血清瘦素相关(男性r = 0.60,P = 0.005;女性r = 0.75,P = 0.0001)。然而,在控制了脂肪量后,这些相关性不再存在(r = 0.33和0.36,P无统计学意义)。以E1-FA为因变量,σ皮肤褶厚度和SI为自变量协变量,进行逐步回归分析模型检验。在男性中,σ皮肤褶厚度(P = 0.03)和SI(P = 0.01)均在统计学显著水平进入方程。因此,在男性中,胰岛素敏感性与E1-FA的关系独立于脂肪。在女性中,只有σ皮肤褶厚度(P = 0.04)在统计学显著水平进入回归模型。使用结合这些变量的回归模型,可解释男性血浆E1-FA水平57%的方差,女性为50%。
雌酮脂肪酸酯在人体血液中的循环水平与体脂成正比,与性别无关。在男性中,血浆雌酮脂肪酸酯水平与胰岛素敏感性相关,且独立于体脂。这些发现可能拓宽我们对胰岛素作用调节和体重控制的认识。