Suppr超能文献

Effect of CGP 36742 on the extracellular level of neurotransmitter amino acids in the thalamus.

作者信息

Nyitrai G, Szárics E, Kovács I, Kékesi K A, Juhász G, Kardos J

机构信息

Department of Neurochemistry, Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest.

出版信息

Neurochem Int. 1999 May;34(5):391-8. doi: 10.1016/s0197-0186(99)00042-x.

Abstract

We have evaluated the effect of the brain penetrating GABAb antagonist, CGP 36742 on GABAb receptors using in vivo microdialysis in the ventrobasal thalamus of freely moving rat. When a solution of 1 mM CGP 36742 in ACSF was dialyzed into the ventrobasal thalamus, 2-3-fold increases of extracellular Glu, Asp and Gly running parallel with significant decreases of contralateral extracellular Asp and Gly were observed. Unilateral applications of Glu receptor antagonists (0.5 mM MK801, 0.1 mM CNQX) evoked 2-3-fold decreases of CGP 36742-specific elevations of extracellular Asp, Glu and Gly. Administration of CNQX and MK801 in the absence of CGP 36742 did not alter the extracellular Glu and Gly concentrations whereas extracellular Asp concentrations diminished by 42-45% at both sides. By contrast, no changes of extracellular Gly accompanied the 5-10-fold enhancements of extracellular Asp and Glu, observed during application of the Glu uptake inhibitor, tPDC (1mM). Suspensions of resealed plasmalemma fragments from the rat thalamus were mixed rapidly with the membrane impermeant form of the fluorescence indicator, bis-fura-2 and the changes in fluorescence intensity in response to CGP 36742 (0.5 mM), and the GABAb agonist, baclofen (0.1 mM), were monitored on the time scale of 0.04 ms(-10)s. Progress of CGP 36742-mediated influx, and baclofen-mediated efflux of Ca++ ion, antagonized by CGP 36742, was observed in the 1 ms(-10s) period of time. These data support the hypothesis that background ventrobasal activities and thalamocortical signaling are under the control of inhibitory GABAb receptors in the ventrobasal thalamus.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验