Völker J, Blake R D, Delcourt S G, Breslauer K J
Department of Chemistry, Rutgers University, 610 Taylor Road, Piscataway, NJ, 08854-8087, USA.
Biopolymers. 1999 Sep;50(3):303-18. doi: 10.1002/(SICI)1097-0282(199909)50:3<303::AID-BIP6>3.0.CO;2-U.
We demonstrate that differential scanning calorimetry (DSC) can be used to yield high-resolution melting profiles for DNA plasmids that agree in all major features with the corresponding plasmid melting profiles derived using more traditional optical techniques. We further demonstrate that by combining information derived from both calorimetric and optical melting profiles one can glean insights that are unavailable from either melting curve alone. By using both optical and calorimetric observables, we show how one can resolve, identify, and measure the thermodynamic properties of particular sequences/domains of interest within a plasmid. We also show that complementary DSC and optical melting studies on plasmids with and without specifically designed inserts can provide fundamental advantages over the corresponding melting studies on other model system constructs for thermodynamically characterizing nucleic acid sequences/structures.
我们证明,差示扫描量热法(DSC)可用于生成DNA质粒的高分辨率熔解曲线,其所有主要特征均与使用更传统的光学技术得出的相应质粒熔解曲线一致。我们进一步证明,通过结合量热法和光学熔解曲线获得的信息,可以得到仅从单一熔解曲线无法获得的见解。通过同时使用光学和量热法观测结果,我们展示了如何解析、识别和测量质粒中特定感兴趣序列/结构域的热力学性质。我们还表明,对有或没有专门设计插入片段的质粒进行互补的DSC和光学熔解研究,相对于对其他模型系统构建体进行相应的熔解研究,在热力学表征核酸序列/结构方面具有根本优势。