Suppr超能文献

Nitric oxide and superoxide inhibit platelet-derived growth factor receptor phosphotyrosine phosphatases.

作者信息

Callsen D, Sandau K B, Brüne B

机构信息

University of Erlangen-Nürnberg, Faculty of Medicine, Department of Medicine, Germany.

出版信息

Free Radic Biol Med. 1999 Jun;26(11-12):1544-53. doi: 10.1016/s0891-5849(99)00015-5.

Abstract

Platelet derived growth factor receptor (PDGFR) became tyrosine autophosphorylated in rat mesangial cells shortly after platelet derived growth factor (PDGF) ligation in a tyrosine kinase inhibitor (tyrphostin AG 1296) sensitive manner. Ligand-independent, massive tyrosine PDGFR phosphorylation was achieved by diverse NO releasing compounds. Phosphorylation was slow compared to PDGF, revealed a concentration- and time-dependency, and was not mimicked by lipophilic cyclic-GMP analogues. Interleukin-1 beta/cAMP activated mesangial cells released NO and in turn showed PDGFR phosphorylation. A NO-synthase involvement was assured by L-NG-nitroarginine methyl ester inhibition. PDGFR phosphorylation was also achieved by the redox cycler 2,3-dimethoxy-1,4-naphthoquinone. NO- and O2(.-)-evoked PGDFR phosphorylation was N-acetylcysteine reversible. Cell free dephosphorylation assays revealed PDGFR dephosphorylation by tyrosine phosphatases. Receptor dephosphorylation by cytosolic phosphatases was completed within 30 min and was sensitive to the readdition of NO donors or orthovanadate. In addition, phosphatase activity determined in a direct dephosphorylation assay using the substrate para-nitrophenyl phosphate was attenuated by NO or vanadate. We conclude that cytosolic protein tyrosine phosphatases are targeted by exogenously supplied or endogenously generated NO in mesangial cells. Radical (NO. or O2.-) formation shifts the phosphorylation--dephosphorylation equilibrium towards phosphorylation, thus integrating redox-mediated responses into established signal transducing pathways.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验