Weigelt J, Brown S E, Miles C S, Dixon N E, Otting G
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Structure. 1999 Jun 15;7(6):681-90. doi: 10.1016/s0969-2126(99)80089-6.
DnaB is the primary replicative helicase in Escherichia coli. Native DnaB is a hexamer of identical subunits, each consisting of a larger C-terminal domain and a smaller N-terminal domain. Electron-microscopy data show hexamers with C6 or C3 symmetry, indicating large domain movements and reversible pairwise association.
The three-dimensional structure of the N-terminal domain of E. coli DnaB was determined by nuclear magnetic resonance (NMR) spectroscopy. Structural similarity was found with the primary dimerisation domain of a topoisomerase, the gyrase A subunit from E. coli. A monomer-dimer equilibrium was observed for the isolated N-terminal domain of DnaB. A dimer model with C2 symmetry was derived from intermolecular nuclear Overhauser effects, which is consistent with all available NMR data.
The monomer-dimer equilibrium observed for the N-terminal domain of DnaB is likely to be of functional significance for helicase activity, by participating in the switch between C6 and C3 symmetry of the helicase hexamer.
DnaB是大肠杆菌中的主要复制解旋酶。天然DnaB是由相同亚基组成的六聚体,每个亚基由一个较大的C端结构域和一个较小的N端结构域组成。电子显微镜数据显示具有C6或C3对称性的六聚体,表明存在大的结构域运动和可逆的成对缔合。
通过核磁共振(NMR)光谱法确定了大肠杆菌DnaB N端结构域的三维结构。发现其与一种拓扑异构酶(来自大肠杆菌的促旋酶A亚基)的主要二聚化结构域具有结构相似性。观察到DnaB分离的N端结构域存在单体-二聚体平衡。基于分子间核Overhauser效应得出了具有C2对称性的二聚体模型,这与所有可用的NMR数据一致。
观察到的DnaB N端结构域的单体-二聚体平衡可能通过参与解旋酶六聚体C6和C3对称性之间的转换而对解旋酶活性具有功能意义。