Cravener T L, Roush W B
Department of Poultry Science, Pennsylvania State University, University Park 16802, USA.
Poult Sci. 1999 Jul;78(7):983-91. doi: 10.1093/ps/78.7.983.
Artificial neural networks (ANN) were trained to predict the amino acid (AA) profile of feed ingredients. The ANN more effectively identified the complex relationship between nutrients and feed ingredients than linear regression (LR). Three types of ANN (NeuroShell 2): three-layer backpropagation (BP3), Ward Backpropagation (WBP), a general regression neural network (GRNN); and LR (SAS Proc GLM) were used to predict the AA level in corn, soybean meal, meat and bone meal, fish meal, and wheat based on proximate analysis. In contrast to a past study, a variety of alternative ANN training parameters were examined to improve ANN performance. Predictive performance was judged on the basis of the maximum R2 value resulting from all defaults tested. Advanced selection of ANN training parameters led to further improvement in performance, especially within the GRNN architecture. In 34 of 35 ANN developed, the maximum R2 value for each individual AA in each feed ingredient was higher for GRNN than for LR, BP3, or WBP prediction methods. For example, the highest R2 value for Met in corn was 0.32 for LR, 0.40 for 3LBP, 0.51 for WBP, and 0.95 for GRNN analysis. Predictive performance was also improved overall as compared to results of a previous study. For example, corn maximum R2 values (GRNN) for Met, TSAA, and Trp were: 0.78, 0.81 and 0.44, previously, and 0.95, 0.96 and 0.88, in the current study. Current soybean meal maximum R values (GRNN) were: Met, 0.92; TSAA, 0.94; and Lys, 0.90. Current meat and bone mean maximum R2 values (GRNN) were: Met, 0.97; TSAA, 0.97; and Lys, 0.97. The ANN computation is a successful alternative to statistical regression analysis for predicting AA levels in feed ingredients.
训练人工神经网络(ANN)来预测饲料原料的氨基酸(AA)谱。与线性回归(LR)相比,ANN能更有效地识别营养素与饲料原料之间的复杂关系。使用三种类型的ANN(NeuroShell 2):三层反向传播(BP3)、Ward反向传播(WBP)、广义回归神经网络(GRNN);以及LR(SAS Proc GLM),基于近似分析来预测玉米、豆粕、肉骨粉、鱼粉和小麦中的AA水平。与以往的研究不同,本研究考察了各种替代的ANN训练参数以提高ANN性能。预测性能根据所有测试默认值产生的最大R2值来判断。ANN训练参数的优化选择进一步提高了性能,尤其是在GRNN架构中。在开发的35个ANN中的34个中,GRNN预测方法对每种饲料原料中每种单个AA的最大R2值高于LR、BP3或WBP预测方法。例如,玉米中蛋氨酸的最高R2值,LR为0.32,3LBP为0.40,WBP为0.51,GRNN分析为0.95。与先前研究的结果相比,预测性能总体上也有所提高。例如,玉米中蛋氨酸、总可消化氨基酸(TSAA)和色氨酸的最大R2值(GRNN),先前分别为0.78、0.81和0.44,本研究中分别为0.95、0.96和0.88。当前豆粕的最大R值(GRNN)为:蛋氨酸0.92;TSAA 0.94;赖氨酸0.90。当前肉骨粉的最大R2值(GRNN)为:蛋氨酸0.97;TSAA 0.97;赖氨酸0.97。ANN计算是预测饲料原料中AA水平的统计回归分析的成功替代方法。