Lees M J, Whitelaw M L
Department of Biochemistry, University of Adelaide, Adelaide 5005, South Australia, Australia.
Mol Cell Biol. 1999 Aug;19(8):5811-22. doi: 10.1128/MCB.19.8.5811.
The dioxin receptor is a ligand-activated transcription factor belonging to an emerging class of basic helix-loop-helix/PAS proteins which show interaction with the molecular chaperone hsp90 in their latent states and require heterodimerization with a general cofactor, Arnt, to form active DNA binding complexes. Upon binding of polycyclic aromatic hydrocarbons typified by dioxin, the dioxin receptor translocates from the cytoplasm to the nucleus to allow interaction with Arnt. Here we have bypassed the nuclear translocation step by creating a cell line which expresses a constitutively nuclear dioxin receptor, which we find remains in a latent form, demonstrating that ligand has functional roles beyond initiating nuclear import of the receptor. Treatment of the nuclear receptor with dioxin induces dimerization with Arnt to form an active transcription factor complex, while in stark contrast, treatment with the hsp90 ligand geldanamycin results in rapid degradation of the receptor. Inhibition of degradation by a proteasome inhibitor allowed geldanamycin to transform the nuclear dioxin receptor to a heterodimer with Arnt (DR-Arnt). Our results indicate that unchaperoned dioxin receptor is extremely labile and is consistent with a concerted nuclear mechanism for receptor activation whereby hsp90 is released from the ligand-bound dioxin receptor concomitant with Arnt dimerization. Strikingly, artificial transformation of the receptor by geldanamycin provided a DR-Arnt complex capable of binding DNA but incapable of stimulating transcription. Limited proteolysis of DR-Arnt heterodimers indicated different conformations for dioxin versus geldanamycin-transformed receptors. Our studies of intracellular dioxin receptor transformation indicate that ligand plays multiple mechanistic roles during receptor activation, being important for nuclear translocation, transformation to an Arnt heterodimer, and maintenance of a structural integrity key for transcriptional activation.
二噁英受体是一种配体激活的转录因子,属于一类新兴的碱性螺旋-环-螺旋/PAS蛋白,这类蛋白在其潜伏状态下与分子伴侣hsp90相互作用,并且需要与通用辅因子Arnt异源二聚化以形成活性DNA结合复合物。在以二噁英为代表的多环芳烃结合后,二噁英受体从细胞质转运至细胞核,以便与Arnt相互作用。在此,我们通过创建一种表达组成型核二噁英受体的细胞系绕过了核转运步骤,我们发现该受体仍处于潜伏形式,这表明配体除了启动受体的核输入外还具有功能性作用。用二噁英处理核受体可诱导其与Arnt二聚化以形成活性转录因子复合物,而与之形成鲜明对比的是,用hsp90配体格尔德霉素处理会导致受体快速降解。蛋白酶体抑制剂对降解的抑制作用使格尔德霉素能够将核二噁英受体转化为与Arnt的异源二聚体(DR-Arnt)。我们的结果表明,无伴侣的二噁英受体极其不稳定,这与受体激活的协同核机制一致,即hsp90从与配体结合的二噁英受体上释放,同时发生Arnt二聚化。引人注目的是,格尔德霉素对受体的人工转化产生了一种能够结合DNA但不能刺激转录的DR-Arnt复合物。对DR-Arnt异源二聚体的有限蛋白酶解表明,二噁英转化的受体与格尔德霉素转化的受体具有不同的构象。我们对细胞内二噁英受体转化的研究表明,配体在受体激活过程中发挥多种机制作用,对核转运、转化为Arnt异源二聚体以及维持转录激活关键的结构完整性都很重要。