Norel R, Petrey D, Wolfson H J, Nussinov R
Computer Science Department, School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.
Proteins. 1999 Aug 15;36(3):307-17.
Here we carry out an examination of shape complementarity as a criterion in protein-protein docking and binding. Specifically, we examine the quality of shape complementarity as a critical determinant not only in the docking of 26 protein-protein "bound" complexed cases, but in particular, of 19 "unbound" protein-protein cases, where the structures have been determined separately. In all cases, entire molecular surfaces are utilized in the docking, with no consideration of the location of the active site, or of particular residues/atoms in either the receptor or the ligand that participate in the binding. To evaluate the goodness of the strictly geometry-based shape complementarity in the docking process as compared to the main favorable and unfavorable energy components, we study systematically a potential correlation between each of these components and the root mean square deviation (RMSD) of the "unbound" protein-protein cases. Specifically, we examine the non-polar buried surface area, polar buried surface area, buried surface area relating to groups bearing unsatisfied buried charges, and the number of hydrogen bonds in all docked protein-protein interfaces. For these cases, where the two proteins have been crystallized separately, and where entire molecular surfaces are considered without a predefinition of the binding site, no correlation is observed. None of these parameters appears to consistently improve on shape complementarity in the docking of unbound molecules. These findings argue that simplicity in the docking process, utilizing geometrical shape criteria may capture many of the essential features in protein-protein docking. In particular, they further reinforce the long held notion of the importance of molecular surface shape complementarity in the binding, and hence in docking. This is particularly interesting in light of the fact that the structures of the docked pairs have been determined separately, allowing side chains on the surface of the proteins to move relatively freely. This study has been enabled by our efficient, computer vision-based docking algorithms. The fast CPU matching times, on the order of minutes on a PC, allow such large-scale docking experiments of large molecules, which may not be feasible by other techniques. Proteins 1999;36:307-317.
在此,我们展开了一项关于形状互补性的研究,将其作为蛋白质 - 蛋白质对接与结合的一个评判标准。具体而言,我们不仅考察了形状互补性的质量,它作为一个关键决定因素,对于26个蛋白质 - 蛋白质“结合”复合案例的对接情况,更特别的是,对于19个“未结合”蛋白质 - 蛋白质案例的对接情况进行了研究,这些案例中蛋白质结构是分别确定的。在所有案例中,对接时使用的是整个分子表面,并未考虑活性位点的位置,也未考虑受体或配体中参与结合的特定残基/原子。为了评估在对接过程中基于严格几何形状的形状互补性与主要的有利和不利能量成分相比的优劣,我们系统地研究了这些成分中的每一个与“未结合”蛋白质 - 蛋白质案例的均方根偏差(RMSD)之间的潜在相关性。具体来说,我们考察了非极性埋藏表面积、极性埋藏表面积、与带有未满足埋藏电荷基团相关的埋藏表面积,以及所有对接的蛋白质 - 蛋白质界面中的氢键数量。对于这些案例,即两种蛋白质是分别结晶的,并且在不预先定义结合位点的情况下考虑整个分子表面,未观察到相关性。在未结合分子的对接中,这些参数似乎都不能始终如一地比形状互补性表现得更好。这些发现表明,在对接过程中利用几何形状标准的简单性可能捕捉到蛋白质 - 蛋白质对接中的许多基本特征。特别是,它们进一步强化了长期以来关于分子表面形状互补性在结合以及因此在对接中重要性的观念。鉴于对接对的结构是分别确定的,这使得蛋白质表面上的侧链能够相对自由地移动这一事实,这一点尤其有趣。这项研究是通过我们高效的基于计算机视觉的对接算法得以实现的。在个人电脑上,快速的CPU匹配时间在几分钟量级,这使得对大分子进行如此大规模的对接实验成为可能,而这用其他技术可能是不可行的。《蛋白质》1999年;36卷:307 - 317页