Chen Rong, Weng Zhiping
Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA.
Proteins. 2003 May 15;51(3):397-408. doi: 10.1002/prot.10334.
Shape complementarity is the most basic ingredient of the scoring functions for protein-protein docking. Most grid-based docking algorithms use the total number of grid points at the binding interface to quantify shape complementarity. We have developed a novel Pairwise Shape Complementarity (PSC) function that is conceptually simple and rapid to compute. The favorable component of PSC is the total number of atom pairs between the receptor and the ligand within a distance cutoff. When applied to a benchmark of 49 test cases, PSC consistently ranks near-native structures higher and produces more near-native structures than the traditional grid-based function, and the improvement was seen across all prediction levels and in all categories of the benchmark. Without any post-processing or biological information about the binding site except the complementarity-determining region of antibodies, PSC predicts the complex structure correctly for 6 test cases, and ranks at least one near-native structure in the top 20 predictions for 18 test cases. Our docking program ZDOCK has been parallelized and the average computing time is 4 minutes using sixteen IBM SP3 processors. Both ZDOCK and the benchmark are freely available to academic users (http://zlab.bu.edu/~ rong/dock).
形状互补性是蛋白质-蛋白质对接评分函数最基本的要素。大多数基于网格的对接算法使用结合界面处的网格点数来量化形状互补性。我们开发了一种新颖的成对形状互补性(PSC)函数,其概念简单且计算迅速。PSC的有利成分是受体与配体之间在距离截止范围内的原子对总数。当应用于49个测试案例的基准时,与传统的基于网格的函数相比,PSC始终能将接近天然的结构排名更高,并产生更多接近天然的结构,且在基准的所有预测水平和所有类别中均能看到这种改进。除了抗体的互补决定区外,无需任何关于结合位点的后处理或生物学信息,PSC就能正确预测6个测试案例的复合物结构,并在18个测试案例的前20个预测中至少将一个接近天然的结构排名靠前。我们的对接程序ZDOCK已实现并行化,使用16个IBM SP3处理器时平均计算时间为4分钟。学术用户可免费获取ZDOCK和基准(http://zlab.bu.edu/~rong/dock)。