Suppr超能文献

高等植物泛酸生物合成的最后一步:来自日本百脉根和水稻(Oryza sativum)的泛酸合成酶的克隆与特性分析

The final step of pantothenate biosynthesis in higher plants: cloning and characterization of pantothenate synthetase from Lotus japonicus and Oryza sativum (rice).

作者信息

Genschel U, Powell C A, Abell C, Smith A G

机构信息

Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, U.K.

出版信息

Biochem J. 1999 Aug 1;341 ( Pt 3)(Pt 3):669-78. doi: 10.1042/0264-6021:3410669.

Abstract

We have isolated a Lotus japonicus cDNA for pantothenate (vitamin B(5)) synthetase (PS) by functional complementation of an Escherichia coli panC mutant (AT1371). A rice (Oryza sativum) expressed sequence tag, identified by sequence similarity to PS, was also able to complement the E. coli auxotroph, as was an open reading frame from Saccharomyces cerevisiae (baker's yeast). The Lotus and rice cDNAs encode proteins of approx. 34 kDa, which are 65% similar at the amino acid level and do not appear to encode N-terminal extensions by comparison with PS sequences from other organisms. Furthermore, analysis of genomic sequence flanking the coding sequence for PS in Lotus suggests the original cDNA is full-length. The Lotus and rice PSs are therefore likely to be cytosolic. Southern analysis of Lotus genomic DNA indicates that there is a single gene for PS. Recombinant PS from Lotus, overexpressed in E. coli AT1371, is a dimer. The enzyme requires d-pantoate, beta-alanine and ATP for activity and has a higher affinity for pantoate (K(m) 45 microM) than for beta-alanine (K(m) 990 microM). Uncompetitive substrate inhibition becomes significant at pantoate concentrations above 1 mM. The enzyme displays optimal activity at about 0.5 mM pantoate (k(cat) 0.63 s(-1)) and at pH 7.8. Neither oxopantoate nor pantoyl-lactone can replace pantoate as substrate. Antibodies raised against recombinant PS detected a band of 34 kDa in Western blots of Lotus proteins from both roots and leaves. The implications of these findings for pantothenate biosynthesis in plants are discussed.

摘要

我们通过大肠杆菌泛C突变体(AT1371)的功能互补,分离出了一个百脉根中泛酸(维生素B5)合成酶(PS)的cDNA。一个通过与PS的序列相似性鉴定出的水稻(稻属)表达序列标签,也能够互补大肠杆菌营养缺陷型,酿酒酵母(面包酵母)的一个开放阅读框也有此功能。百脉根和水稻的cDNA编码约34 kDa的蛋白质,它们在氨基酸水平上有65%的相似性,与其他生物的PS序列相比,似乎不编码N端延伸。此外,对百脉根中PS编码序列侧翼基因组序列的分析表明,原始cDNA是全长的。因此,百脉根和水稻的PS可能位于胞质溶胶中。对百脉根基因组DNA的Southern分析表明,PS只有一个基因。在大肠杆菌AT1371中过表达的百脉根重组PS是一种二聚体。该酶活性需要d-泛解酸、β-丙氨酸和ATP,对泛解酸(K(m) 45 μM)的亲和力高于对β-丙氨酸(K(m) 990 μM)。当泛解酸浓度高于1 mM时,非竞争性底物抑制作用变得显著。该酶在约0.5 mM泛解酸(k(cat) 0.63 s(-1))和pH 7.8时表现出最佳活性。草酰泛解酸和泛酰内酯都不能替代泛解酸作为底物。针对重组PS产生的抗体在来自根和叶的百脉根蛋白质的Western印迹中检测到一条34 kDa的条带。讨论了这些发现对植物中泛酸生物合成的意义。

相似文献

2
Molecular adaptation and allostery in plant pantothenate synthetases.植物泛酸合成酶中的分子适应性与变构效应
J Biol Chem. 2006 Dec 8;281(49):37435-46. doi: 10.1074/jbc.M607895200. Epub 2006 Oct 13.
6
A novel isoform of pantothenate synthetase in the Archaea.古细菌中泛酸合成酶的一种新型同工型。
FEBS J. 2008 Jun;275(11):2754-64. doi: 10.1111/j.1742-4658.2008.06416.x. Epub 2008 Apr 16.

引用本文的文献

5
The Synthesis and Role of β-Alanine in Plants.β-丙氨酸在植物中的合成与作用
Front Plant Sci. 2019 Jul 18;10:921. doi: 10.3389/fpls.2019.00921. eCollection 2019.
8
Towards engineering increased pantothenate (vitamin B(5)) levels in plants.致力于提高植物中泛酸(维生素B5)的含量。
Plant Mol Biol. 2008 Nov;68(4-5):493-503. doi: 10.1007/s11103-008-9386-5. Epub 2008 Aug 23.

本文引用的文献

4
Characterization and sequence of the Escherichia coli panBCD gene cluster.大肠杆菌panBCD基因簇的表征与序列分析
FEMS Microbiol Lett. 1996 Oct 1;143(2-3):247-52. doi: 10.1111/j.1574-6968.1996.tb08488.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验