Rombel I, Peters-Wendisch P, Mesecar A, Thorgeirsson T, Shin Y K, Kustu S
Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
J Bacteriol. 1999 Aug;181(15):4628-38. doi: 10.1128/JB.181.15.4628-4638.1999.
When phosphorylated, the dimeric form of nitrogen regulatory protein C (NtrC) of Salmonella typhimurium forms a larger oligomer(s) that can hydrolyze ATP and hence activate transcription by the sigma(54)-holoenzyme form of RNA polymerase. Studies of Mg-nucleoside triphosphate binding using a filter-binding assay indicated that phosphorylation is not required for nucleotide binding but probably controls nucleotide hydrolysis per se. Studies of binding by isothermal titration calorimetry indicated that the apparent K(d) of unphosphorylated NtrC for MgATPgammaS is 100 microM at 25 degrees C, and studies by filter binding indicated that the concentration of MgATP required for half-maximal binding is 130 microM at 37 degrees C. Filter-binding studies with mutant forms of NtrC defective in ATP hydrolysis implicated two regions of its central domain directly in nucleotide binding and three additional regions in hydrolysis. All five are highly conserved among activators of sigma(54)-holoenzyme. Regions implicated in binding are the Walker A motif and the region around residues G355 to R358, which may interact with the nucleotide base. Regions implicated in nucleotide hydrolysis are residues S207 and E208, which have been proposed to lie in a region analogous to the switch I effector region of p21(ras) and other purine nucleotide-binding proteins; residue R294, which may be a catalytic residue; and residue D239, which is the conserved aspartate in the putative Walker B motif. D239 appears to play a role in binding the divalent cation essential for nucleotide hydrolysis. Electron paramagnetic resonance analysis of Mn(2+) binding indicated that the central domain of NtrC does not bind divalent cation strongly in the absence of nucleotide.
鼠伤寒沙门氏菌的氮调节蛋白C(NtrC)二聚体形式在磷酸化后会形成更大的寡聚体,该寡聚体能够水解ATP,从而通过RNA聚合酶的σ⁵⁴全酶形式激活转录。使用滤膜结合分析法对Mg-核苷三磷酸结合进行的研究表明,核苷酸结合不需要磷酸化,但磷酸化可能本身就控制着核苷酸的水解。等温滴定量热法结合研究表明,未磷酸化的NtrC对MgATPγS的表观解离常数(Kd)在25℃时为100μM,滤膜结合研究表明,在37℃时半最大结合所需的MgATP浓度为130μM。对ATP水解有缺陷的NtrC突变体形式进行的滤膜结合研究表明,其中心结构域的两个区域直接参与核苷酸结合,另外三个区域参与水解。在σ⁵⁴全酶的激活剂中,所有这五个区域都高度保守。与结合有关的区域是沃克A基序以及残基G355至R358周围的区域,该区域可能与核苷酸碱基相互作用。与核苷酸水解有关的区域是残基S207和E208,有人提出它们位于类似于p21(ras)和其他嘌呤核苷酸结合蛋白的开关I效应区域;残基R294,可能是催化残基;以及残基D239,它是假定的沃克B基序中保守的天冬氨酸。D239似乎在结合核苷酸水解所必需的二价阳离子中起作用。对Mn²⁺结合的电子顺磁共振分析表明,在没有核苷酸的情况下,NtrC的中心结构域与二价阳离子的结合不强。