Suppr超能文献

细菌增强子结合蛋白作为 σ54 依赖性转录的专门激活因子的作用。

The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription.

机构信息

Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, United Kingdom.

出版信息

Microbiol Mol Biol Rev. 2012 Sep;76(3):497-529. doi: 10.1128/MMBR.00006-12.

Abstract

Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.

摘要

细菌增强子结合蛋白(bEBPs)是转录激活因子,它们在活性形式下组装成六聚体环,并利用 ATP 水解来重塑包含替代 sigma 因子 σ(54)的 RNA 聚合酶的构象。我们全面详细地总结了我们对这些特殊分子机器如何发挥作用的理解的最新进展。该综述按顺序介绍了三个结构域中的每一个:中央催化结构域、N 端调节结构域和 C 端 DNA 结合结构域。中央催化结构域的作用特别提到了(i)寡聚化,(ii)ATP 水解,以及(iii)与 σ(54)接触进行重塑的关键 GAFTGA 基序。这些功能中的每一个都形成了信号感应 N 端调节结构域的潜在靶点,该结构域可以正向或负向作用以控制 σ(54)依赖性转录的激活。最后,我们关注 C 端结构域和增强子结合位点的 DNA 结合功能。特别关注 σ(54)对细菌细胞的重要性及其在调节转录中的独特作用。

相似文献

1
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription.
Microbiol Mol Biol Rev. 2012 Sep;76(3):497-529. doi: 10.1128/MMBR.00006-12.
3
Domain architectures of sigma54-dependent transcriptional activators.
J Bacteriol. 2003 Mar;185(6):1757-67. doi: 10.1128/JB.185.6.1757-1767.2003.
4
Bacterial enhancer-binding proteins: unlocking sigma54-dependent gene transcription.
Curr Opin Struct Biol. 2007 Feb;17(1):110-6. doi: 10.1016/j.sbi.2006.11.002. Epub 2006 Dec 6.
6
A role for the conserved GAFTGA motif of AAA+ transcription activators in sensing promoter DNA conformation.
J Biol Chem. 2007 Jan 12;282(2):1087-97. doi: 10.1074/jbc.M608715200. Epub 2006 Nov 6.
8
A key hydrophobic patch identified in an AAA⁺ protein essential for its in trans inhibitory regulation.
J Mol Biol. 2013 Aug 9;425(15):2656-69. doi: 10.1016/j.jmb.2013.04.024. Epub 2013 May 7.
9
The role of the conserved phenylalanine in the sigma54-interacting GAFTGA motif of bacterial enhancer binding proteins.
Nucleic Acids Res. 2009 Oct;37(18):5981-92. doi: 10.1093/nar/gkp658. Epub 2009 Aug 19.
10
Essential roles of three enhancer sites in sigma54-dependent transcription by the nitric oxide sensing regulatory protein NorR.
Nucleic Acids Res. 2010 Mar;38(4):1182-94. doi: 10.1093/nar/gkp1065. Epub 2009 Dec 2.

引用本文的文献

1
Disrupting NtrC function reveals unexpected robustness in a central cell cycle regulatory network.
mBio. 2025 Sep 10;16(9):e0196225. doi: 10.1128/mbio.01962-25. Epub 2025 Aug 18.
3
Analysis and comparison of the bacterial σ54 regulon: Evidence of phylogenetic trends in gene regulation.
PLoS One. 2025 Aug 1;20(8):e0327805. doi: 10.1371/journal.pone.0327805. eCollection 2025.
6
Late gene regulation by the alternative sigma factors of .
mSystems. 2025 Jul 22;10(7):e0029225. doi: 10.1128/msystems.00292-25. Epub 2025 Jun 12.
7
A metabolite dehydrogenase pathway represses sporulation of Clostridioides difficile.
Anaerobe. 2025 Jun;93:102971. doi: 10.1016/j.anaerobe.2025.102971. Epub 2025 May 9.
9
P protein is essential for transcriptional regulation of gene cluster for iron-only nitrogenase in .
Appl Environ Microbiol. 2025 May 21;91(5):e0046525. doi: 10.1128/aem.00465-25. Epub 2025 Apr 10.
10
Is Enhancer Function Driven by Protein-Protein Interactions? From Bacteria to Leukemia.
Bioessays. 2025 Jun;47(6):e70006. doi: 10.1002/bies.70006. Epub 2025 Apr 8.

本文引用的文献

2
Structural basis for promoter-10 element recognition by the bacterial RNA polymerase σ subunit.
Cell. 2011 Dec 9;147(6):1257-69. doi: 10.1016/j.cell.2011.10.041. Epub 2011 Dec 1.
3
A specificity determinant for phosphorylation in a response regulator prevents in vivo cross-talk and modification by acetyl phosphate.
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20160-5. doi: 10.1073/pnas.1113013108. Epub 2011 Nov 29.
4
Coupling AAA protein function to regulated gene expression.
Biochim Biophys Acta. 2012 Jan;1823(1):108-16. doi: 10.1016/j.bbamcr.2011.08.012. Epub 2011 Aug 31.
5
ClpX(P) generates mechanical force to unfold and translocate its protein substrates.
Cell. 2011 Apr 29;145(3):459-69. doi: 10.1016/j.cell.2011.04.010.
6
Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine.
Cell. 2011 Apr 15;145(2):257-67. doi: 10.1016/j.cell.2011.03.036.
7
Single chain forms of the enhancer binding protein PspF provide insights into geometric requirements for gene activation.
J Biol Chem. 2011 Apr 8;286(14):12734-42. doi: 10.1074/jbc.M110.203554. Epub 2011 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验