Suppr超能文献

贝叶斯方法用于ROC曲线的Meta分析。

Bayesian approaches to meta-analysis of ROC curves.

作者信息

Hellmich M, Abrams K R, Sutton A J

机构信息

Department of Epidemiology and Public Health, University of Leicester, UK.

出版信息

Med Decis Making. 1999 Jul-Sep;19(3):252-64. doi: 10.1177/0272989X9901900304.

Abstract

A comparative review of important classic and Bayesian approaches to fixed-effects and random-effects meta-analysis of binormal ROC curves and areas underneath them is presented. The ROC analyses results of seven evaluation studies concerning the dexamethasone suppression test provide the basis for a worked example. Particular attention is given to fully Bayesian inference, a novelty in the ROC context, based on Gibbs samples from posterior distributions of hierarchical model parameters and related quantities. Fully Bayesian meta-analysis may properly account for the uncertainty associated with the model parameters, possibly incorporating prior knowledge and beliefs, and allows clinically intuitive predictions of unobserved study effects via calculation of posterior predictive densities. The effects of various different prior specifications (six noninformative as well as one informative) on the posterior estimates are investigated (sensitivity-analysis). Recommendations and suggestions for further research are made. Computer code for the more advanced methods may either be downloaded via the Internet or be found elsewhere.

摘要

本文对双正态ROC曲线及其下方面积的固定效应和随机效应荟萃分析的重要经典方法和贝叶斯方法进行了比较综述。关于地塞米松抑制试验的七项评估研究的ROC分析结果为一个实例提供了基础。特别关注了完全贝叶斯推断,这在ROC背景下是一种新方法,它基于分层模型参数和相关量的后验分布的吉布斯样本。完全贝叶斯荟萃分析可以适当地考虑与模型参数相关的不确定性,可能纳入先验知识和信念,并通过计算后验预测密度对未观察到的研究效应进行临床直观预测。研究了各种不同先验规范(六个非信息性先验以及一个信息性先验)对后验估计的影响(敏感性分析)。提出了进一步研究的建议。更先进方法的计算机代码可以通过互联网下载或在其他地方找到。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验