Vázquez-Polo Francisco-Jose, Moreno Elías, Negrín Miguel A, Martel Maria
Department of Quantitative Methods and TiDES Institute, University of Las Palmas de GC, 35017-Las Palmas de Gran Canaria, Spain.
Expert Rev Pharmacoecon Outcomes Res. 2015 Apr;15(2):317-22. doi: 10.1586/14737167.2015.1011131. Epub 2015 Feb 11.
In most cases, including those of discrete random variables, statistical meta-analysis is carried out using the normal random effect model. The authors argue that normal approximation does not always properly reflect the underlying uncertainty of the original discrete data. Furthermore, in the presence of rare events the results from this approximation can be very poor. This review proposes a Bayesian meta-analysis to address binary outcomes from sparse data and also introduces a simple way to examine the sensitivity of the quantities of interest in the meta-analysis with respect to the structure dependence selected. The findings suggest that for binary outcomes data it is possible to develop a Bayesian procedure, which can be directly applied to sparse data without ad hoc corrections. By choosing a suitable class of linking distributions, the authors found that a Bayesian robustness study can be easily implemented. For illustrative purposes, an example with real data is analyzed using the proposed Bayesian meta-analysis for binomial sparse data.
在大多数情况下,包括离散随机变量的情况,统计元分析是使用正态随机效应模型进行的。作者认为,正态近似并不总是能恰当地反映原始离散数据的潜在不确定性。此外,在存在罕见事件的情况下,这种近似的结果可能非常糟糕。本综述提出了一种贝叶斯元分析方法来处理稀疏数据的二元结果,还介绍了一种简单方法来检验元分析中感兴趣的量相对于所选结构依赖性的敏感性。研究结果表明,对于二元结果数据,有可能开发一种贝叶斯程序,该程序可以直接应用于稀疏数据而无需特别校正。通过选择合适的一类链接分布,作者发现可以轻松实施贝叶斯稳健性研究。为了说明目的,使用针对二项式稀疏数据提出的贝叶斯元分析方法分析了一个真实数据的示例。