Suppr超能文献

Importance of the fraction of microcrystalline cellulose and spheronization speed on the properties of extruded pellets made from binary mixtures.

作者信息

Kleinebudde P, Schröder M, Schultz P, Müller B W, Waaler T, Nymo L

机构信息

Department of Pharmaceutics and Biopharmaceutics, Christian-Albrecht-University, Kiel, Germany.

出版信息

Pharm Dev Technol. 1999 Aug;4(3):397-404. doi: 10.1081/pdt-100101375.

Abstract

The aim of the study was to prove the importance of the binary mixture composition and spheronization speed on pellet properties. Extrudates from different binary mixtures of microcrystalline cellulose (MCC) and dicalcium phosphate dihydrate were prepared with a power-consumption-controlled extruder and spheronized at different speeds. The water content of the extrudate for the production of spherical pellets was evaluated. The pellets were characterized in terms of size, shape, porosity, mechanical properties, and disintegration. The fraction of MCC in the binary mixtures had the highest impact on the pellet properties. With an increasing fraction of MCC more water was required for successful pelletization, size and porosity of the pellets decreased, and the surface tensile stress increased. These observations were evaluated using the "sponge" and the "crystallite--gel" models for MCC. The latter led to the conception that an extrudate consists of two phases: a percolating crystallite--gel phase formed by MCC and water during extrusion and a filler phase formed by the second component of the binary mixture. This two-phase concept provides explanations for the extent of shrinking during drying and for the disintegration behavior. The spheronization speed had an influence on the size but not on porosity or surface tensile stress of the pellets. The best results were obtained at intermediate spheronization velocities of 10 and 13.4 m/sec. Fundamental properties of extrudates and pellets can be described by applying a two-phase concept of the crystallite--gel model.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验