Suppr超能文献

用于预测颅底脑膜瘤切除范围及预后的拟议分级系统。

Proposed grading system to predict the extent of resection and outcomes for cranial base meningiomas.

作者信息

Levine Z T, Buchanan R I, Sekhar L N, Rosen C L, Wright D C

机构信息

Department of Neurological Surgery, George Washington University Medical Center, Washington, District of Columbia, USA.

出版信息

Neurosurgery. 1999 Aug;45(2):221-30. doi: 10.1097/00006123-199908000-00003.

Abstract

OBJECTIVE

This investigation was performed to construct a grading system for cranial base meningiomas that augments the current system of topographic labeling. This new system classifies cranial base meningiomas based on predicted surgical resection and patient outcomes.

METHODS

Two hundred thirty-two consecutive patients with cranial base meningiomas were surgically treated by the two senior authors between April 1993 and August 1997. Using standard statistical tests, a large number of preoperative, intraoperative, and follow-up findings were analyzed for correlation with the extent of resection. These included the presence of previous radiotherapy, Cranial Nerve III, V, and VI palsies, multiple fossa involvement, and vessel encasement.

RESULTS

Analysis revealed that each variable tested was independently and inversely correlated with total tumor resection (P < 0.002). We were able to construct a grading system based on these variables; when more variables are present, the grade is higher. With the grading system, lower-grade tumors were correlated with increased probabilities of total resection (r2 = 0.9947) and better patient outcomes, as measured by Karnofsky performance scale scores (r = 0.9291). We also found that, as a group, patients who underwent subtotal resection exhibited worse Karnofsky performance scale scores and had longer hospital stays.

CONCLUSION

The current system of classifying cranial base meningiomas provides no information regarding the tumor except location and no information concerning patient prognosis. We present a more useful system to categorize these tumors. Our scheme must be tested at other centers to corroborate our findings. This new grading system should serve to guide surgical treatment, inform patients, and improve communication among surgeons.

摘要

目的

本研究旨在构建一种颅底脑膜瘤分级系统,以完善当前的地形学标记系统。该新系统基于预测的手术切除情况和患者预后对颅底脑膜瘤进行分类。

方法

1993年4月至1997年8月期间,两位资深作者对连续232例颅底脑膜瘤患者进行了手术治疗。运用标准统计测试,对大量术前、术中和随访结果进行分析,以确定其与切除范围的相关性。这些因素包括既往放疗史、动眼神经、三叉神经和展神经麻痹、多颅窝受累以及血管包绕情况。

结果

分析显示,所测试的每个变量均与肿瘤全切独立且呈负相关(P < 0.002)。我们能够基于这些变量构建一个分级系统;存在的变量越多,分级越高。根据该分级系统,较低级别的肿瘤与全切概率增加(r2 = 0.9947)以及更好的患者预后相关,以卡氏功能状态评分衡量(r = 0.9291)。我们还发现,作为一个群体,接受次全切除手术的患者卡氏功能状态评分较差,住院时间更长。

结论

当前颅底脑膜瘤的分类系统除了位置外,没有提供关于肿瘤的任何信息,也没有关于患者预后的信息。我们提出了一个更有用的系统来对这些肿瘤进行分类。我们的方案必须在其他中心进行测试,以证实我们的发现。这个新的分级系统应有助于指导手术治疗、告知患者并改善外科医生之间的沟通。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验