Suppr超能文献

危险因素、评分系统和预后模型在预测脑膜瘤手术功能结局中的作用:552 例颅底脑膜瘤的多中心研究。

Role of risk factors, scoring systems, and prognostic models in predicting the functional outcome in meningioma surgery: multicentric study of 552 skull base meningiomas.

机构信息

Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, U Vojenske nemocnice 1200, 16902, Prague, Czech Republic.

First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.

出版信息

Neurosurg Rev. 2023 May 23;46(1):124. doi: 10.1007/s10143-023-02004-5.

Abstract

Despite the importance of functional outcome, only a few scoring systems exist to predict neurologic outcome in meningioma surgery. Therefore, our study aims to identify preoperative risk factors and develop the receiver operating characteristics (ROC) models estimating the risk of a new postoperative neurologic deficit and a decrease in Karnofsky performance status (KPS). A multicentric study was conducted in a cohort of 552 consecutive patients with skull base meningiomas who underwent surgical resection from 2014 to 2019. Data were gathered from clinical, surgical, and pathology records as well as radiological diagnostics. The preoperative predictive factors of functional outcome (neurologic deficit, decrease in KPS) were analyzed in univariate and multivariate stepwise selection analyses. Permanent neurologic deficits were present in 73 (13.2%) patients and a postoperative decrease in KPS in 84 (15.2%). Surgery-related mortality was 1.3%. A ROC model was developed to estimate the probability of a new neurologic deficit (area 0.74; SE 0.0284; 95% Wald confidence limits (0.69; 0.80)) based on meningioma location and diameter. Consequently, a ROC model was developed to predict the probability of a postoperative decrease in KPS (area 0.80; SE 0.0289; 95% Wald confidence limits (0.74; 0.85)) based on the patient's age, meningioma location, diameter, presence of hyperostosis, and dural tail. To ensure an evidence-based therapeutic approach, treatment should be founded on known risk factors, scoring systems, and predictive models. We propose ROC models predicting the functional outcome of skull base meningioma resection based on the age of the patient, meningioma size, and location and the presence of hyperostosis and dural tail.

摘要

尽管功能结果很重要,但目前只有少数评分系统可用于预测脑膜瘤手术的神经学结果。因此,我们的研究旨在确定术前危险因素,并建立接受者操作特征(ROC)模型,以估计新的术后神经功能缺损和卡诺夫斯基表现状态(KPS)下降的风险。对 2014 年至 2019 年间接受手术切除的 552 例颅底脑膜瘤连续患者进行了一项多中心研究。数据来自临床、手术和病理记录以及放射学诊断。在单变量和多变量逐步选择分析中分析了功能结果(神经功能缺损,KPS 下降)的术前预测因素。73 例(13.2%)患者存在永久性神经功能缺损,84 例(15.2%)患者术后 KPS 下降。手术相关死亡率为 1.3%。开发了一种 ROC 模型,以基于脑膜瘤位置和直径估计新发神经功能缺损的概率(面积 0.74;SE 0.0284;95% Wald 置信区间(0.69;0.80))。因此,基于患者年龄、脑膜瘤位置、直径、骨质增生和硬脑膜尾的存在,开发了一种 ROC 模型来预测术后 KPS 下降的概率(面积 0.80;SE 0.0289;95% Wald 置信区间(0.74;0.85))。为了确保循证治疗方法,治疗应基于已知的危险因素、评分系统和预测模型。我们提出了基于患者年龄、脑膜瘤大小和位置以及骨质增生和硬脑膜尾的存在来预测颅底脑膜瘤切除功能结果的 ROC 模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600c/10205827/ba499f01e449/10143_2023_2004_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验