Suppr超能文献

序列标签连接物:一种用于绘制和扫描人类基因组的序列方法。

Sequence-tagged connectors: a sequence approach to mapping and scanning the human genome.

作者信息

Mahairas G G, Wallace J C, Smith K, Swartzell S, Holzman T, Keller A, Shaker R, Furlong J, Young J, Zhao S, Adams M D, Hood L

机构信息

University of Washington High-Throughput Sequencing Center, 401 Queen Anne Avenue North, Seattle, WA 98109, USA.

出版信息

Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9739-44. doi: 10.1073/pnas.96.17.9739.

Abstract

The sequence-tagged connector (STC) strategy proposes to generate sequence tags densely scattered (every 3.3 kilobases) across the human genome by arraying 450,000 bacterial artificial chromosomes (BACs) with randomly cleaved inserts, sequencing both ends of each, and preparing a restriction enzyme fingerprint of each. The STC resource, containing end sequences, fingerprints, and arrayed BACs, creates a map where the interrelationships of the individual BAC clones are resolved through their STCs as overlapping BAC clones are sequenced. Once a seed or initiation BAC clone is sequenced, the minimum overlapping 5' and 3' BAC clones can be identified computationally and sequenced. By reiterating this "sequence-then-map by computer analysis against the STC database" strategy, a minimum tiling path of clones can be sequenced at a rate that is primarily limited by the sequencing throughput of individual genome centers. As of February 1999, we had deposited, together with The Institute for Genomic Research (TIGR), into GenBank 314,000 STCs ( approximately 135 megabases), or 4.5% of human genomic DNA. This genome survey reveals numerous genes, genome-wide repeats, simple sequence repeats (potential genetic markers), and CpG islands (potential gene initiation sites). It also illustrates the power of the STC strategy for creating minimum tiling paths of BAC clones for large-scale genomic sequencing. Because the STC resource permits the easy integration of genetic, physical, gene, and sequence maps for chromosomes, it will be a powerful tool for the initial analysis of the human genome and other complex genomes.

摘要

序列标签连接体(STC)策略提议通过排列45万个带有随机切割插入片段的细菌人工染色体(BAC),对每个片段的两端进行测序,并对每个片段制备限制性酶切指纹图谱,从而在人类基因组中密集分布(每3.3千碱基一个)序列标签。STC资源包含末端序列、指纹图谱和排列好的BAC,构建了一个图谱,通过对重叠BAC克隆进行测序,各个BAC克隆之间的相互关系可通过它们的STC得以解析。一旦对一个种子或起始BAC克隆进行测序,就可以通过计算机识别并测序与之最小重叠的5'和3'端BAC克隆。通过反复运用这种“先测序,然后通过计算机分析与STC数据库比对进行制图”的策略,克隆的最小拼接路径可以按照主要受各个基因组中心测序通量限制的速度进行测序。截至1999年2月,我们与基因组研究所(TIGR)一起已向GenBank存入了31.4万个STC(约135兆碱基),占人类基因组DNA的4.5%。这项基因组调查揭示了众多基因、全基因组重复序列、简单序列重复(潜在遗传标记)和CpG岛(潜在基因起始位点)。它还展示了STC策略在创建用于大规模基因组测序的BAC克隆最小拼接路径方面的强大作用。由于STC资源允许轻松整合染色体的遗传、物理、基因和序列图谱,它将成为人类基因组及其他复杂基因组初步分析的有力工具。

相似文献

1
Sequence-tagged connectors: a sequence approach to mapping and scanning the human genome.
Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9739-44. doi: 10.1073/pnas.96.17.9739.
3
Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat.
Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19243-8. doi: 10.1073/pnas.0509473102. Epub 2005 Dec 15.
4
A marker-dense physical map of the Bradyrhizobium japonicum genome.
Genome Res. 2001 Aug;11(8):1434-40. doi: 10.1101/gr.185001.
5
Rice transposable elements: a survey of 73,000 sequence-tagged-connectors.
Genome Res. 2000 Jul;10(7):982-90. doi: 10.1101/gr.10.7.982.
7
A BAC-based physical map of the major autosomes of Drosophila melanogaster.
Science. 2000 Mar 24;287(5461):2271-4. doi: 10.1126/science.287.5461.2271.
8
A multiway analysis for identifying high integrity bovine BACs.
BMC Genomics. 2009 Jan 23;10:46. doi: 10.1186/1471-2164-10-46.
10
Human BAC ends.
Nucleic Acids Res. 2000 Jan 1;28(1):129-32. doi: 10.1093/nar/28.1.129.

引用本文的文献

1
Generation of physical map contig-specific sequences.
Front Genet. 2014 Jul 22;5:243. doi: 10.3389/fgene.2014.00243. eCollection 2014.
2
Advances in BAC-based physical mapping and map integration strategies in plants.
J Biomed Biotechnol. 2012;2012:184854. doi: 10.1155/2012/184854. Epub 2012 Feb 27.
5
An overview of the apple genome through BAC end sequence analysis.
Plant Mol Biol. 2008 Aug;67(6):581-8. doi: 10.1007/s11103-008-9321-9. Epub 2008 Jun 3.
6
Progress in understanding and sequencing the genome of Brassica rapa.
Int J Plant Genomics. 2008;2008:582837. doi: 10.1155/2008/582837.
9
Pooled genomic indexing of rhesus macaque.
Genome Res. 2005 Feb;15(2):292-301. doi: 10.1101/gr.3162505.
10
Human, mouse, and rat genome large-scale rearrangements: stability versus speciation.
Genome Res. 2004 Oct;14(10A):1851-60. doi: 10.1101/gr.2663304. Epub 2004 Sep 13.

本文引用的文献

1
Isolation of CpG islands from large genomic clones.
Nucleic Acids Res. 1999 May 15;27(10):2099-107. doi: 10.1093/nar/27.10.2099.
3
Academic sequencers challenge Celera in a sprint to the finish.
Science. 1999 Mar 19;283(5409):1822-3. doi: 10.1126/science.283.5409.1822.
5
A physical map of 30,000 human genes.
Science. 1998 Oct 23;282(5389):744-6. doi: 10.1126/science.282.5389.744.
6
NIH to produce a 'working draft' of the genome by 2001.
Science. 1998 Sep 18;281(5384):1774-5. doi: 10.1126/science.281.5384.1774.
7
Shotgun sequencing of the human genome.
Science. 1998 Jun 5;280(5369):1540-2. doi: 10.1126/science.280.5369.1540.
8
Estimation of errors in "raw" DNA sequences: a validation study.
Genome Res. 1998 Mar;8(3):251-9. doi: 10.1101/gr.8.3.251.
10
Base-calling of automated sequencer traces using phred. I. Accuracy assessment.
Genome Res. 1998 Mar;8(3):175-85. doi: 10.1101/gr.8.3.175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验