Hansen L L, Ikeda Y, Olsen G S, Busch A K, Mosthaf L
Department of Molecular Signaling, Hagedorn Research Institute, Niels Steensens Vej 6, 2820 Gentofte, Denmark.
J Biol Chem. 1999 Aug 27;274(35):25078-84. doi: 10.1074/jbc.274.35.25078.
Both hyperglycemia and tumor necrosis factor alpha (TNFalpha) were found to induce insulin resistance at the level of the insulin receptor (IR). How this effect is mediated is, however, not understood. We investigated whether oxidative stress and production of hydrogen peroxide could be a common mediator of the inhibitory effect. We report here that micromolar concentrations of H(2)O(2) dramatically inhibit insulin-induced IR tyrosine phosphorylation (pretreatment with 500 microM H(2)O(2) for 5 min inhibits insulin-induced IR tyrosine phosphorylation to 8%), insulin receptor substrate 1 phosphorylation, as well as insulin downstream signaling such as activation of phosphatidylinositol 3-kinase (inhibited to 57%), glucose transport (inhibited to 36%), and mitogen-activated protein kinase activation (inhibited to 7.2%). Both sodium orthovanadate, a selective inhibitor of tyrosine-specific phosphatases, as well as the protein kinase C inhibitor Gö6976 reduced the inhibitory effect of hydrogen peroxide on IR tyrosine phosphorylation. To investigate whether H(2)O(2) is involved in hyperglycemia- and/or TNFalpha-induced insulin resistance, we preincubated the cells with the H(2)O(2) scavenger catalase prior to incubation with 25 mM glucose, 25 mM 2-deoxyglucose, 5.7 nM TNFalpha, or 500 microM H(2)O(2), respectively, and subsequent insulin stimulation. Whereas catalase treatment completely abolished the inhibitory effect of H(2)O(2) and TNFalpha on insulin receptor autophosphorylation, it did not reverse the inhibitory effect of hyperglycemia. In conclusion, these results demonstrate that hydrogen peroxide at low concentrations is a potent inhibitor of insulin signaling and may be involved in the development of insulin resistance in response to TNFalpha.
高血糖和肿瘤坏死因子α(TNFα)均可在胰岛素受体(IR)水平诱导胰岛素抵抗。然而,这种效应是如何介导的尚不清楚。我们研究了氧化应激和过氧化氢的产生是否可能是这种抑制作用的共同介质。我们在此报告,微摩尔浓度的H₂O₂可显著抑制胰岛素诱导的IR酪氨酸磷酸化(用500μM H₂O₂预处理5分钟可将胰岛素诱导的IR酪氨酸磷酸化抑制至8%)、胰岛素受体底物1磷酸化以及胰岛素下游信号传导,如磷脂酰肌醇3激酶的激活(抑制至57%)、葡萄糖转运(抑制至36%)和丝裂原活化蛋白激酶激活(抑制至7.2%)。酪氨酸特异性磷酸酶的选择性抑制剂原钒酸钠以及蛋白激酶C抑制剂Gö6976均可降低过氧化氢对IR酪氨酸磷酸化的抑制作用。为了研究H₂O₂是否参与高血糖和/或TNFα诱导的胰岛素抵抗,我们在分别与25 mM葡萄糖、25 mM 2-脱氧葡萄糖、5.7 nM TNFα或500μM H₂O₂孵育并随后进行胰岛素刺激之前,先用H₂O₂清除剂过氧化氢酶对细胞进行预孵育。虽然过氧化氢酶处理完全消除了H₂O₂和TNFα对胰岛素受体自身磷酸化的抑制作用,但它并未逆转高血糖的抑制作用。总之,这些结果表明低浓度的过氧化氢是胰岛素信号传导的有效抑制剂,可能参与了对TNFα的胰岛素抵抗的发展。