Aliberti J C, Machado F S, Souto J T, Campanelli A P, Teixeira M M, Gazzinelli R T, Silva J S
Department of Immunology, School of Medicine of Ribeirão Preto-USP, Ribeirão Preto-SP, Brazil.
Infect Immun. 1999 Sep;67(9):4819-26. doi: 10.1128/IAI.67.9.4819-4826.1999.
In the present study, we describe the ability of Trypanosoma cruzi trypomastigotes to stimulate the synthesis of beta-chemokines by macrophages. In vivo infection with T. cruzi led to MIP-1alpha, RANTES, and JE/MCP1 mRNA expression by cells from peritoneal inflammatory exudate. In addition, in vitro infection with T. cruzi resulted in expression of beta-chemokine MIP-1alpha, MIP-1beta, RANTES, and JE mRNA by macrophages. The expression of the beta-chemokine MIP-1alpha, MIP-1beta, RANTES, and JE proteins by murine macrophages cultured with trypomastigote forms of T. cruzi was confirmed by immunocytochemistry. Interestingly, macrophage infection with T. cruzi also resulted in NO production, which we found to be mediated mainly by beta-chemokines. Hence, treatment with anti-beta-chemokine-specific neutralizing antibodies partially inhibited NO release by macrophages incubated with T. cruzi parasites. Further, the addition of the exogenous beta-chemokines MIP-1alpha, MIP-1beta, RANTES, and JE/MCP-1 induced an increased T. cruzi uptake, leading to enhanced NO production and control of parasite replication in a dose-dependent manner. L-NMMA, a specific inhibitor of the L-arginine-NO pathway, caused a decrease in NO production and parasite killing when added to cultures of macrophages stimulated with beta-chemokines. Among the beta-chemokines tested, JE was more potent in inhibiting parasite growth, although it was much less efficient than gamma interferon (IFN-gamma). Nevertheless, JE potentiates parasite killing by macrophages incubated with low doses of IFN-gamma. Together, these results suggest that in addition to their chemotactic activity, murine beta-chemokines may also contribute to enhancing parasite uptake and promoting control of parasite replication in macrophages and may play a role in resistance to T. cruzi infection.
在本研究中,我们描述了克氏锥虫无鞭毛体刺激巨噬细胞合成β-趋化因子的能力。克氏锥虫的体内感染导致腹膜炎性渗出液中的细胞表达MIP-1α、RANTES和JE/MCP1 mRNA。此外,克氏锥虫的体外感染导致巨噬细胞表达β-趋化因子MIP-1α、MIP-1β、RANTES和JE mRNA。用克氏锥虫无鞭毛体形式培养的小鼠巨噬细胞中β-趋化因子MIP-1α、MIP-1β、RANTES和JE蛋白的表达通过免疫细胞化学得到证实。有趣的是,克氏锥虫感染巨噬细胞还导致一氧化氮(NO)的产生,我们发现这主要由β-趋化因子介导。因此,用抗β-趋化因子特异性中和抗体处理可部分抑制与克氏锥虫寄生虫一起孵育的巨噬细胞释放NO。此外,添加外源性β-趋化因子MIP-1α、MIP-1β、RANTES和JE/MCP-1可导致克氏锥虫摄取增加,从而以剂量依赖的方式增强NO的产生并控制寄生虫复制。L-NMMA是L-精氨酸-NO途径的特异性抑制剂,当添加到用β-趋化因子刺激的巨噬细胞培养物中时,会导致NO产生减少和寄生虫杀伤作用降低。在所测试的β-趋化因子中,JE在抑制寄生虫生长方面更有效,尽管其效率远低于γ干扰素(IFN-γ)。然而,JE可增强低剂量IFN-γ孵育的巨噬细胞对寄生虫的杀伤作用。总之,这些结果表明,除了其趋化活性外,小鼠β-趋化因子还可能有助于增强巨噬细胞对寄生虫的摄取并促进对寄生虫复制的控制,并且可能在抵抗克氏锥虫感染中发挥作用。