Suppr超能文献

使用动物模型对出生体重和产犊难易度进行阈值线性与线性线性分析:I. 方差分量估计

Threshold-linear versus linear-linear analysis of birth weight and calving ease using an animal model: I. Variance component estimation.

作者信息

Varona L, Misztal I, Bertrand J K

机构信息

Department of Animal and Dairy Science, University of Georgia, Athens 30602, USA.

出版信息

J Anim Sci. 1999 Aug;77(8):1994-2002. doi: 10.2527/1999.7781994x.

Abstract

Birth weight and calving difficulty were analyzed with Bayesian methodology using univariate linear models, a bivariate linear model, a threshold model for calving difficulty, and a joint threshold-linear model using a probit approach. Field data included 26,006 records of Gelbvieh cattle. Simulated populations were generated using parameters estimated from the field data. The Gibbs sampler was used to obtain estimates of the marginal posterior mean and standard deviation of the (co)variance components, heritabilities, and correlations. In the univariate analyses, the posterior mean of direct heritability for calving difficulty was .23 with the threshold model and .18 with the linear model. Maternal heritabilities were .10 and .08, respectively. In the bivariate analysis, posterior means of direct heritability for calving difficulty were .21 and .18 for the bivariate linear-threshold and linear-linear model, respectively. Maternal heritabilities were .09 and .06, respectively. Direct heritability for birth weight was .25 for the univariate model and .26 for bivariate models. Maternal heritability was .05 for the linear-threshold model and the univariate model and .06 for the bivariate linear model. Genetic correlation between direct genetic effects in both traits was .81 for the linear-threshold model and .79 for the bivariate linear. Residual correlation was .35 for the bivariate linear model and .50 for the bivariate linear-threshold. A simulation study confirmed that the posterior mean of the marginal distribution was suitable as a point estimate for univariate threshold and bivariate linear-threshold models.

摘要

采用贝叶斯方法,使用单变量线性模型、双变量线性模型、产犊难度阈值模型以及采用概率单位法的联合阈值 - 线性模型,对出生体重和产犊难度进行了分析。现场数据包括26,006条格尔维牛记录。利用从现场数据估计的参数生成了模拟种群。使用吉布斯采样器获得(协)方差分量、遗传力和相关性的边际后验均值和标准差的估计值。在单变量分析中,产犊难度直接遗传力的后验均值在阈值模型中为0.23,在线性模型中为0.18。母体遗传力分别为0.10和0.08。在双变量分析中,产犊难度直接遗传力的后验均值在双变量线性 - 阈值模型和线性 - 线性模型中分别为0.21和0.18。母体遗传力分别为0.09和0.06。单变量模型中出生体重的直接遗传力为0.25,双变量模型中为0.26。线性 - 阈值模型和单变量模型中母体遗传力为0.05,双变量线性模型中为0.06。两个性状直接遗传效应之间的遗传相关性在直线 - 阈值模型中为0.81,在双变量线性模型中为0.79。双变量线性模型的残差相关性为0.35,双变量线性 - 阈值模型为0.50。一项模拟研究证实,边际分布的后验均值适合作为单变量阈值模型和双变量线性 - 阈值模型的点估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验