Suppr超能文献

GIBBSTHUR:基于瑟斯顿模型估计方差分量和预测用于性状排名的育种值的软件。

GIBBSTHUR: Software for Estimating Variance Components and Predicting Breeding Values for Ranking Traits Based on a Thurstonian Model.

作者信息

Varona Luis, Legarra Andrés

机构信息

Departamento de Anatomía, Embriología y Genética Animal, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50018 Zaragoza, Spain.

Génétique Physiologie et Systèmes d'Elevage (GenPhySE), Institut National de la Recherche Agronomique de Toulouse, 31326 Castanet-Tolosan, France.

出版信息

Animals (Basel). 2020 Jun 8;10(6):1001. doi: 10.3390/ani10061001.

Abstract

(1) Background: Ranking traits are used commonly for breeding purposes in several equine populations; however, implementation is complex, because the position of a horse in a competition event is discontinuous and is influenced by the performance of its competitors. One approach to overcoming these limitations is to assume an underlying Gaussian liability that represents a horse's performance and dictates the observed classification in a competition event. That approach can be implemented using Montecarlo Markov Chain (McMC) techniques with a procedure known as the Thurstonian model. (2) Methods: We have developed software (GIBBSTHUR) that analyses ranking traits along with other continuous or threshold traits. The software implements a Gibbs Sampler scheme with a data-augmentation step for the liability of the ranking traits and provides estimates of the variance and covariance components and predictions of the breeding values and the average performance of the competitors in competition events. (3) Results: The results of a simple example are presented, in which it is shown that the procedure can recover the simulated variance and covariance components. In addition, the correlation between the simulated and predicted breeding values and between the estimates of the event effects and the average additive genetic effect of the competitors demonstrates the ability of the software to produce useful predictions for breeding purposes. (4) Conclusions: the GIBBSTHUR software provides a useful tool for the breeding evaluation of ranking traits in horses and is freely available in a public repository (https://github.com/lvaronaunizar/Gibbsthur).

摘要

(1) 背景:在几个马种群中,排名性状常用于育种目的;然而,实施起来很复杂,因为一匹马在比赛中的名次是不连续的,且受其竞争对手表现的影响。克服这些限制的一种方法是假设一个潜在的高斯 liability,它代表一匹马的表现并决定在比赛中的观察分类。该方法可使用蒙特卡罗马尔可夫链(McMC)技术和一种称为瑟斯顿模型的程序来实施。(2) 方法:我们开发了软件(GIBBSTHUR),用于分析排名性状以及其他连续或阈值性状。该软件对排名性状的 liability 实施带有数据增强步骤的吉布斯采样器方案,并提供方差和协方差分量的估计值以及育种值的预测值和比赛中竞争对手的平均表现。(3) 结果:给出了一个简单示例的结果,其中表明该程序可以恢复模拟的方差和协方差分量。此外,模拟育种值与预测育种值之间以及事件效应估计值与竞争对手平均加性遗传效应之间的相关性表明该软件能够为育种目的做出有用的预测。(4) 结论:GIBBSTHUR 软件为马的排名性状育种评估提供了一个有用的工具,可在公共存储库(https://github.com/lvaronaunizar/Gibbsthur)中免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f000/7341208/5c1c12e492ee/animals-10-01001-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验