Klatt P, Molina E P, De Lacoba M G, Padilla C A, Martinez-Galesteo E, Barcena J A, Lamas S
Departamento de Estructura y Función de Proteínas, Instituto Reina Sofía de Investigaciones Nefrológicas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.
FASEB J. 1999 Sep;13(12):1481-90. doi: 10.1096/fasebj.13.12.1481.
Redox control of the transcription factor c-Jun maps to a single cysteine in its DNA binding domain. However, the nature of the oxidized state of this cysteine and, thus, the potential molecular mechanisms accounting for the redox regulation of c-Jun DNA binding remain unclear. To address this issue, we have analyzed the purified recombinant c-Jun DNA binding domain for redox-dependent thiol modifications and concomitant changes in DNA binding activity. We show that changes in the ratio of reduced to oxidized glutathione provide the potential to oxidize c-Jun sulfhydryls by mechanisms that include both protein disulfide formation and S-glutathiolation. We provide evidence that S-glutathiolation, which is specifically targeted to the cysteine residue located in the DNA binding site of the protein, may account for the reversible redox regulation of c-Jun DNA binding. Furthermore, based on a molecular model of the S-glutathiolated protein, we discuss the structural elements facilitating S-glutathiolation and how this modification interferes with DNA binding. Given the structural similarities between the positively charged cysteine-containing DNA binding motif of c-Jun and the DNA binding site of related oxidant-sensitive transcriptional activators, the unprecedented phenomenon of redox-triggered S-thiolation of a transcription factor described in this report suggests a novel role for protein thiolation in the redox control of transcription.
转录因子c-Jun的氧化还原调控定位于其DNA结合结构域中的单个半胱氨酸。然而,该半胱氨酸氧化态的性质以及因此导致c-Jun DNA结合的氧化还原调控的潜在分子机制仍不清楚。为了解决这个问题,我们分析了纯化的重组c-Jun DNA结合结构域的氧化还原依赖性硫醇修饰以及DNA结合活性的伴随变化。我们表明,还原型谷胱甘肽与氧化型谷胱甘肽比例的变化提供了通过包括蛋白质二硫键形成和S-谷胱甘肽化在内的机制氧化c-Jun巯基的潜力。我们提供的证据表明,特异性靶向位于蛋白质DNA结合位点的半胱氨酸残基的S-谷胱甘肽化可能是c-Jun DNA结合可逆氧化还原调控的原因。此外,基于S-谷胱甘肽化蛋白质的分子模型,我们讨论了促进S-谷胱甘肽化的结构元件以及这种修饰如何干扰DNA结合。鉴于c-Jun带正电荷的含半胱氨酸DNA结合基序与相关氧化敏感转录激活因子的DNA结合位点之间的结构相似性,本报告中描述的转录因子氧化还原触发的S-硫醇化这一前所未有的现象表明蛋白质硫醇化在转录氧化还原调控中具有新作用。