Suppr超能文献

单细胞电穿孔建模。II. 离子浓度的影响。

Modeling electroporation in a single cell. II. Effects Of ionic concentrations.

作者信息

DeBruin K A, Krassowska W

机构信息

Department of Biomedical Engineering and Center for Emerging Cardiovascular Technologies, Duke University, Durham, North Carolina 27708-0281 USA.

出版信息

Biophys J. 1999 Sep;77(3):1225-33. doi: 10.1016/S0006-3495(99)76974-2.

Abstract

This study expands a previously developed model of a single cell electroporated by an external electric field by explicitly accounting for the ionic composition of the electroporation current. The previous model with non-specific electroporation current predicts that both the transmembrane potential V(m) and the pore density N are symmetric about the equator, with the same values at either end of the cell. The new, ion-specific case predicts that V(m) is symmetric and almost identical to the profile from the non-specific case, but N has a profound asymmetry with the pore density at the hyperpolarized end of the cell twice the value at the depolarized end. These modeling results agree with the experimentally observed preferential uptake of marker molecules at the hyperpolarized end of the cell as reported in the literature. This study also investigates the changes in intracellular ionic concentrations induced around an electroporated single cell. For all ion species, the concentrations near the membrane vary significantly, which may explain the electrical disturbances observed experimentally after large electric shocks are delivered to excitable cells and tissues.

摘要

本研究通过明确考虑电穿孔电流的离子组成,扩展了先前开发的外部电场电穿孔单细胞模型。具有非特异性电穿孔电流的先前模型预测,跨膜电位V(m)和孔密度N关于赤道对称,在细胞两端具有相同的值。新的离子特异性情况预测,V(m)是对称的,并且几乎与非特异性情况的分布相同,但N具有明显的不对称性,细胞超极化端的孔密度是去极化端的两倍。这些建模结果与文献中报道的实验观察到的细胞超极化端标记分子的优先摄取一致。本研究还研究了电穿孔单细胞周围诱导的细胞内离子浓度变化。对于所有离子种类,膜附近的浓度变化显著,这可能解释了在向可兴奋细胞和组织施加大型电休克后实验观察到的电干扰。

相似文献

1
Modeling electroporation in a single cell. II. Effects Of ionic concentrations.
Biophys J. 1999 Sep;77(3):1225-33. doi: 10.1016/S0006-3495(99)76974-2.
2
Modeling electroporation in a single cell. I. Effects Of field strength and rest potential.
Biophys J. 1999 Sep;77(3):1213-24. doi: 10.1016/S0006-3495(99)76973-0.
3
Modeling the electromobility of ions in a target tissue.
DNA Cell Biol. 2003 Dec;22(12):823-8. doi: 10.1089/104454903322625037.
4
Theoretical and experimental analysis of electroporated membrane conductance in cell suspension.
IEEE Trans Biomed Eng. 2011 Dec;58(12):3310-8. doi: 10.1109/TBME.2010.2103074. Epub 2010 Dec 30.
5
Cell membrane electroporation modeling: A multiphysics approach.
Bioelectrochemistry. 2018 Dec;124:28-39. doi: 10.1016/j.bioelechem.2018.06.010. Epub 2018 Jul 3.
6
Modeling environment for numerical simulation of applied electric fields on biological cells.
Electromagn Biol Med. 2007;26(3):239-50. doi: 10.1080/15368370701572712.
8
Electric fields around and within single cells during electroporation-a model study.
Ann Biomed Eng. 2007 Jul;35(7):1264-75. doi: 10.1007/s10439-007-9282-1. Epub 2007 Mar 6.
9
Electroporation theory. Concepts and mechanisms.
Methods Mol Biol. 1995;47:1-26. doi: 10.1385/0-89603-310-4:1.
10
Feasibility study for cell electroporation detection and separation by means of dielectrophoresis.
Bioelectrochemistry. 2007 Nov;71(2):164-71. doi: 10.1016/j.bioelechem.2007.04.001. Epub 2007 Apr 18.

引用本文的文献

1
Power-Driven Electroporation Is Predictive of Treatment Outcomes in a Conductivity-Independent Manner.
BME Front. 2025 Aug 12;6:0169. doi: 10.34133/bmef.0169. eCollection 2025.
2
Synthesis Method and High Salt Concentration Can Affect Electrodeformation of GUVs under Strong Pulsed DC Fields.
ACS Omega. 2025 Feb 14;10(7):6427-6436. doi: 10.1021/acsomega.4c06412. eCollection 2025 Feb 25.
3
Inactivation of bacteria using synergistic hydrogen peroxide with split-dose nanosecond pulsed electric field exposures.
PLoS One. 2024 Nov 18;19(11):e0311232. doi: 10.1371/journal.pone.0311232. eCollection 2024.
4
2D electrical admittance lattice model of biological cellular system for modeling electroporation.
Biophys J. 2024 Sep 17;123(18):3176-3187. doi: 10.1016/j.bpj.2024.07.016. Epub 2024 Jul 16.
5
Reversible Pulsed Electrical Fields as an In Vivo Tool to Study Cardiac Electrophysiology: The Advent of Pulsed Field Mapping.
Circ Arrhythm Electrophysiol. 2023 Oct;16(10):e012018. doi: 10.1161/CIRCEP.123.012018. Epub 2023 Sep 20.
6
Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel.
J Membr Biol. 2017 Jun;250(3):285-299. doi: 10.1007/s00232-017-9961-2. Epub 2017 Apr 29.
8
Probing Lipid Bilayers under Ionic Imbalance.
Biophys J. 2016 Dec 6;111(11):2460-2469. doi: 10.1016/j.bpj.2016.10.006.
9
Targeted cellular ablation based on the morphology of malignant cells.
Sci Rep. 2015 Nov 24;5:17157. doi: 10.1038/srep17157.
10
An engineered membrane to measure electroporation: effect of tethers and bioelectronic interface.
Biophys J. 2014 Sep 16;107(6):1339-51. doi: 10.1016/j.bpj.2014.07.056.

本文引用的文献

2
Dose-dependent reduction of cardiac transmembrane potential by high-intensity electrical shocks.
Am J Physiol. 1997 Dec;273(6):H2817-25. doi: 10.1152/ajpheart.1997.273.6.H2817.
5
Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells.
Biochim Biophys Acta. 1996 Oct 23;1284(2):143-52. doi: 10.1016/s0005-2736(96)00119-8.
7
Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential.
Biophys J. 1993 Jun;64(6):1789-800. doi: 10.1016/S0006-3495(93)81550-9.
8
Electroporation in symmetric and asymmetric membranes.
Biochim Biophys Acta. 1993 Jun 18;1149(1):10-8. doi: 10.1016/0005-2736(93)90019-v.
9
Effects of strong electrical shock on cardiac muscle tissue.
Ann N Y Acad Sci. 1994 May 31;720:160-75. doi: 10.1111/j.1749-6632.1994.tb30444.x.
10
Selective and asymmetric molecular transport across electroporated cell membranes.
Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11512-6. doi: 10.1073/pnas.91.24.11512.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验