Zhang B, Xu G, Evans J S
Laboratory for Chemical Physics, Department of Chemistry, New York University, New York, NY 10010 USA.
Biophys J. 1999 Sep;77(3):1306-15. doi: 10.1016/S0006-3495(99)76980-8.
Molecular elasticity is a physicomechanical property that is associated with a select number of polypeptides and proteins, such as the giant muscle protein, titin, and the extracellular matrix protein, tenascin. Both proteins have been the subject of atomic force microscopy (AFM), laser tweezer, and other in vitro methods for examining the effects of force extension on the globular (FNIII/Ig-like) domains that comprise each protein. In this report we present a time-dependent method for simulating AFM force extension and its effect on FNIII/Ig domain unfolding and refolding. This method treats the unfolding and refolding process as a standard three-state protein folding model (U right arrow over left arrow T right arrow over left arrow F, where U is the unfolded state, T is the transition or intermediate state, and F is the fully folded state), and integrates this approach within the wormlike chain (WLC) concept. We simulated the effect of AFM tip extension on a hypothetical titin molecule comprised of 30 globular domains (Ig or FNIII) and 25% Pro-Glu-Val-Lys (PEVK) content, and analyzed the unfolding and refolding processes as a function of AFM tip extension, extension rate, and variation in PEVK content. In general, we find that the use of a three-state protein-folding kinetic-based model and the implicit inclusion of PEVK domains can accurately reproduce the experimental force-extension curves observed for both titin and tenascin proteins. Furthermore, our simulation data indicate that PEVK domains exhibit extensibility behavior, assist in the unfolding and refolding of FNIII/Ig domains in the titin molecule, and act as a force "buffer" for the FNIII/Ig domains, particularly at low and moderate extension forces.
分子弹性是一种物理机械特性,与某些特定的多肽和蛋白质相关,比如巨大的肌肉蛋白肌联蛋白以及细胞外基质蛋白腱生蛋白。这两种蛋白质一直是原子力显微镜(AFM)、激光镊子以及其他体外方法的研究对象,这些方法用于检测力延伸对构成每种蛋白质的球状(纤连蛋白III型/免疫球蛋白样)结构域的影响。在本报告中,我们提出了一种时间依赖性方法,用于模拟AFM力延伸及其对纤连蛋白III型/免疫球蛋白结构域展开和重新折叠的影响。该方法将展开和重新折叠过程视为标准的三态蛋白质折叠模型(U ⇄ T ⇄ F,其中U是未折叠状态,T是过渡或中间状态,F是完全折叠状态),并将此方法整合到蠕虫状链(WLC)概念中。我们模拟了AFM针尖延伸对一个假设的肌联蛋白分子的影响,该分子由30个球状结构域(免疫球蛋白或纤连蛋白III型)和25%的脯氨酸 - 谷氨酸 - 缬氨酸 - 赖氨酸(PEVK)组成,并分析了展开和重新折叠过程与AFM针尖延伸、延伸速率以及PEVK含量变化的关系。总体而言,我们发现基于三态蛋白质折叠动力学的模型以及对PEVK结构域的隐含纳入能够准确再现肌联蛋白和腱生蛋白所观察到的实验力 - 延伸曲线。此外,我们的模拟数据表明,PEVK结构域表现出可延伸行为,有助于肌联蛋白分子中纤连蛋白III型/免疫球蛋白结构域展开和重新折叠,并作为纤连蛋白III型/免疫球蛋白结构域的力“缓冲器”,特别是在低和中等延伸力时。