人类比目鱼肌纤维被动应力松弛的分子基础:免疫球蛋白样结构域展开作用的评估。
Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding.
作者信息
Trombitás K, Wu Y, McNabb M, Greaser M, Kellermayer M S Z, Labeit S, Granzier H
机构信息
Veterinary and Comparative Anatomy, Pharmacology and Phisiology,[correction Physiology] Washington State University, Pullman, Washington 99164-6520, USA.
出版信息
Biophys J. 2003 Nov;85(5):3142-53. doi: 10.1016/S0006-3495(03)74732-8.
Titin (also known as connectin) is the main determinant of physiological levels of passive muscle force. This force is generated by the extensible I-band region of the molecule, which is constructed of the PEVK domain and tandem-immunoglobulin segments comprising serially linked immunoglobulin (Ig)-like domains. It is unresolved whether under physiological conditions Ig domains remain folded and act as "spacers" that set the sarcomere length at which the PEVK extends or whether they contribute to titin's extensibility by unfolding. Here we focused on whether Ig unfolding plays a prominent role in stress relaxation (decay of force at constant length after stretch) using mechanical and immunolabeling studies on relaxed human soleus muscle fibers and Monte Carlo simulations. Simulation experiments using Ig-domain unfolding parameters obtained in earlier single-molecule atomic force microscopy experiments recover the phenomenology of stress relaxation and predict large-scale unfolding in titin during an extended period (> approximately 20 min) of relaxation. By contrast, immunolabeling experiments failed to demonstrate large-scale unfolding. Thus, under physiological conditions in relaxed human soleus fibers, Ig domains are more stable than predicted by atomic force microscopy experiments. Ig-domain unfolding did not become more pronounced after gelsolin treatment, suggesting that the thin filament is unlikely to significantly contribute to the mechanical stability of the domains. We conclude that in human soleus fibers, Ig unfolding cannot solely explain stress relaxation.
肌联蛋白(也称为连接蛋白)是被动肌肉力量生理水平的主要决定因素。这种力量由分子中可伸展的I带区域产生,该区域由PEVK结构域和串联免疫球蛋白片段构成,这些片段包含串联连接的免疫球蛋白(Ig)样结构域。在生理条件下,Ig结构域是否保持折叠状态并作为设定PEVK伸展的肌节长度的“间隔物”,或者它们是否通过展开来促进肌联蛋白的伸展性,目前尚无定论。在这里,我们通过对松弛的人类比目鱼肌纤维进行机械和免疫标记研究以及蒙特卡罗模拟,重点研究了Ig展开在应力松弛(拉伸后在恒定长度下力的衰减)中是否起重要作用。使用早期单分子原子力显微镜实验中获得的Ig结构域展开参数进行的模拟实验重现了应力松弛现象,并预测在延长的松弛期(>约20分钟)内肌联蛋白会发生大规模展开。相比之下,免疫标记实验未能证明存在大规模展开。因此,在松弛的人类比目鱼肌纤维的生理条件下,Ig结构域比原子力显微镜实验预测的更稳定。凝溶胶蛋白处理后,Ig结构域的展开并没有变得更明显,这表明细肌丝不太可能对结构域的机械稳定性有显著贡献。我们得出结论,在人类比目鱼肌纤维中,Ig展开不能单独解释应力松弛。