Serre L, Sailland A, Sy D, Boudec P, Rolland A, Pebay-Peyroula E, Cohen-Addad C
Institut de Biologie Structurale Jean-Pierre Ebel, CNRS/CEA, Grenoble, France.
Structure. 1999 Aug 15;7(8):977-88. doi: 10.1016/s0969-2126(99)80124-5.
In plants and photosynthetic bacteria, the tyrosine degradation pathway is crucial because homogentisate, a tyrosine degradation product, is a precursor for the biosynthesis of photosynthetic pigments, such as quinones or tocophenols. Homogentisate biosynthesis includes a decarboxylation step, a dioxygenation and a rearrangement of the pyruvate sidechain. This complex reaction is carried out by a single enzyme, the 4-hydroxyphenylpyruvate dioxygenase (HPPD), a non-heme iron dependent enzyme that is active as a homotetramer in bacteria and as a homodimer in plants. Moreover, in humans, a HPPD deficiency is found to be related to tyrosinemia, a rare hereditary disorder of tyrosine catabolism.
We report here the crystal structure of Pseudomonas fluorescens HPPD refined to 2.4 A resolution (Rfree 27.6%; R factor 21.9%). The general topology of the protein comprises two barrel-shaped domains and is similar to the structures of Pseudomonas 2,3-dihydroxybiphenyl dioxygenase (DHBD) and Pseudomonas putida catechol 2,3-dioxygenase (MPC). Each structural domain contains two repeated betaalpha betabeta betaalpha modules. There is one non-heme iron atom per monomer liganded to the sidechains of His161, His240, Glu322 and one acetate molecule.
The analysis of the HPPD structure and its superposition with the structures of DHBD and MPC highlight some important differences in the active sites of these enzymes. These comparisons also suggest that the pyruvate part of the HPPD substrate (4-hydroxyphenylpyruvate) and the O2 molecule would occupy the three free coordination sites of the catalytic iron atom. This substrate-enzyme model will aid the design of new inhibitors of the homogentisate biosynthesis reaction.
在植物和光合细菌中,酪氨酸降解途径至关重要,因为酪氨酸降解产物尿黑酸是光合色素(如醌或生育酚)生物合成的前体。尿黑酸生物合成包括一个脱羧步骤、一个双加氧反应以及丙酮酸侧链的重排。这个复杂的反应由单一酶——4-羟基苯丙酮酸双加氧酶(HPPD)催化,它是一种非血红素铁依赖性酶,在细菌中以同四聚体形式发挥活性,在植物中以同二聚体形式发挥活性。此外,在人类中,发现HPPD缺乏与酪氨酸血症有关,酪氨酸血症是一种罕见的酪氨酸分解代谢遗传性疾病。
我们在此报告了荧光假单胞菌HPPD的晶体结构,其精修至2.4 Å分辨率(自由R因子27.6%;R因子21.9%)。该蛋白质的总体拓扑结构由两个桶状结构域组成,与假单胞菌2,3-二羟基联苯双加氧酶(DHBD)和恶臭假单胞菌儿茶酚2,3-双加氧酶(MPC)的结构相似。每个结构域包含两个重复的β-α-β-β-β-α模块。每个单体有一个非血红素铁原子,与His161、His240、Glu322的侧链以及一个乙酸分子配位。
对HPPD结构及其与DHBD和MPC结构的叠加分析突出了这些酶活性位点的一些重要差异。这些比较还表明,HPPD底物(4-羟基苯丙酮酸)的丙酮酸部分和O2分子将占据催化铁原子的三个自由配位位点。这种底物-酶模型将有助于设计尿黑酸生物合成反应的新型抑制剂。