Suppr超能文献

流动腔生物膜中细菌生长活性的分布

Distribution of bacterial growth activity in flow-chamber biofilms.

作者信息

Sternberg C, Christensen B B, Johansen T, Toftgaard Nielsen A, Andersen J B, Givskov M, Molin S

机构信息

Department of Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark.

出版信息

Appl Environ Microbiol. 1999 Sep;65(9):4108-17. doi: 10.1128/AEM.65.9.4108-4117.1999.

Abstract

In microbial communities such as those found in biofilms, individual organisms most often display heterogeneous behavior with respect to their metabolic activity, growth status, gene expression pattern, etc. In that context, a novel reporter system for monitoring of cellular growth activity has been designed. It comprises a transposon cassette carrying fusions between the growth rate-regulated Escherichia coli rrnBP1 promoter and different variant gfp genes. It is shown that the P1 promoter is regulated in the same way in E. coli and Pseudomonas putida, making it useful for monitoring of growth activity in organisms outside the group of enteric bacteria. Construction of fusions to genes encoding unstable Gfp proteins opened up the possibility of the monitoring of rates of rRNA synthesis and, in this way, allowing on-line determination of the distribution of growth activity in a complex community. With the use of these reporter tools, it is demonstrated that individual cells of a toluene-degrading P. putida strain growing in a benzyl alcohol-supplemented biofilm have different levels of growth activity which develop as the biofilm gets older. Cells that eventually grow very slowly or not at all may be stimulated to restart growth if provided with a more easily metabolizable carbon source. Thus, the dynamics of biofilm growth activity has been tracked to the level of individual cells, cell clusters, and microcolonies.

摘要

在诸如生物膜中发现的微生物群落中,单个生物体在其代谢活性、生长状态、基因表达模式等方面通常表现出异质性行为。在此背景下,设计了一种用于监测细胞生长活性的新型报告系统。它包含一个转座子盒,该转座子盒携带生长速率调节的大肠杆菌rrnBP1启动子与不同变体gfp基因之间的融合体。结果表明,P1启动子在大肠杆菌和恶臭假单胞菌中的调控方式相同,这使得它可用于监测肠道细菌群体之外的生物体中的生长活性。构建与编码不稳定Gfp蛋白的基因的融合体,为监测rRNA合成速率开辟了可能性,从而能够在线确定复杂群落中生长活性的分布。使用这些报告工具表明,在添加了苯甲醇的生物膜中生长的甲苯降解恶臭假单胞菌菌株的单个细胞具有不同水平的生长活性,并且随着生物膜变老而发展。如果提供更容易代谢的碳源,最终生长非常缓慢或根本不生长的细胞可能会被刺激重新开始生长。因此,生物膜生长活性的动态已被追踪到单个细胞、细胞簇和微菌落的水平。

相似文献

1
Distribution of bacterial growth activity in flow-chamber biofilms.
Appl Environ Microbiol. 1999 Sep;65(9):4108-17. doi: 10.1128/AEM.65.9.4108-4117.1999.
3
Metabolic commensalism and competition in a two-species microbial consortium.
Appl Environ Microbiol. 2002 May;68(5):2495-502. doi: 10.1128/AEM.68.5.2495-2502.2002.
4
Establishment of new genetic traits in a microbial biofilm community.
Appl Environ Microbiol. 1998 Jun;64(6):2247-55. doi: 10.1128/AEM.64.6.2247-2255.1998.
5
In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members.
Appl Environ Microbiol. 1998 Feb;64(2):721-32. doi: 10.1128/AEM.64.2.721-732.1998.
7
Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins.
Environ Microbiol. 2004 Jul;6(7):726-32. doi: 10.1111/j.1462-2920.2004.00605.x.

引用本文的文献

1
Fluid flow drives phenotypic heterogeneity in bacterial growth and adhesion on surfaces.
Nat Commun. 2024 Jul 22;15(1):6161. doi: 10.1038/s41467-024-49997-1.
2
Physiology, fast and slow: bacterial response to variable resource stoichiometry and dilution rate.
mSystems. 2024 Aug 20;9(8):e0077024. doi: 10.1128/msystems.00770-24. Epub 2024 Jul 9.
3
The non-attached biofilm aggregate.
Commun Biol. 2023 Sep 1;6(1):898. doi: 10.1038/s42003-023-05281-4.
4
Innovative Strategies to Overcome Antimicrobial Resistance and Tolerance.
Microorganisms. 2022 Dec 21;11(1):16. doi: 10.3390/microorganisms11010016.
5
Biofilms: Formation, drug resistance and alternatives to conventional approaches.
AIMS Microbiol. 2022 Jul 4;8(3):239-277. doi: 10.3934/microbiol.2022019. eCollection 2022.
6
Ankle brachial indices and anaerobes: is peripheral arterial disease associated with anaerobic bacteria in diabetic foot ulcers?
Ther Adv Endocrinol Metab. 2022 Aug 23;13:20420188221118747. doi: 10.1177/20420188221118747. eCollection 2022.
7
Impact of Gene Repression on Biofilm Formation of .
Front Microbiol. 2022 Jun 2;13:912297. doi: 10.3389/fmicb.2022.912297. eCollection 2022.
10
SagS and its unorthodox contributions to biofilm development.
Biofilm. 2021 Oct 21;3:100059. doi: 10.1016/j.bioflm.2021.100059. eCollection 2021 Dec.

本文引用的文献

1
Effects of biofilm structures on oxygen distribution and mass transport.
Biotechnol Bioeng. 1994 May;43(11):1131-8. doi: 10.1002/bit.260431118.
2
Bacterial growth on surfaces: automated image analysis for quantification of growth rate-related parameters.
Appl Environ Microbiol. 1995 Feb;61(2):741-8. doi: 10.1128/aem.61.2.741-748.1995.
3
Multicellular organization in a degradative biofilm community.
Appl Environ Microbiol. 1994 Feb;60(2):434-46. doi: 10.1128/aem.60.2.434-446.1994.
5
Molecular tools for study of biofilm physiology.
Methods Enzymol. 1999;310:20-42. doi: 10.1016/s0076-6879(99)10004-1.
6
Use of green fluorescent protein to tag and investigate gene expression in marine bacteria.
Appl Environ Microbiol. 1998 Jul;64(7):2554-9. doi: 10.1128/AEM.64.7.2554-2559.1998.
7
Establishment of new genetic traits in a microbial biofilm community.
Appl Environ Microbiol. 1998 Jun;64(6):2247-55. doi: 10.1128/AEM.64.6.2247-2255.1998.
8
New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria.
Appl Environ Microbiol. 1998 Jun;64(6):2240-6. doi: 10.1128/AEM.64.6.2240-2246.1998.
9
In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members.
Appl Environ Microbiol. 1998 Feb;64(2):721-32. doi: 10.1128/AEM.64.2.721-732.1998.
10
Simultaneous determination of gene expression and bacterial identity in single cells in defined mixtures of pure cultures.
Appl Environ Microbiol. 1997 Sep;63(9):3698-702. doi: 10.1128/aem.63.9.3698-3702.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验