Suppr超能文献

通过监测核糖体含量和合成速率,在单细胞水平分析根际中的细菌活性。

Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates.

作者信息

Ramos C, Mølbak L, Molin S

机构信息

Department of Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark.

出版信息

Appl Environ Microbiol. 2000 Feb;66(2):801-9. doi: 10.1128/AEM.66.2.801-809.2000.

Abstract

The growth activity of Pseudomonas putida cells colonizing the rhizosphere of barley seedlings was estimated at the single-cell level by monitoring ribosomal contents and synthesis rates. Ribosomal synthesis was monitored by using a system comprising a fusion of the ribosomal Escherichia coli rrnBP1 promoter to a gene encoding an unstable variant of the green fluorescent protein (Gfp). Gfp expression in a P. putida strain carrying this system inserted into the chromosome was strongly dependent on the growth phase and growth rate of the strain, and cells growing exponentially at rates of > or = 0.17 h(-1) emitted growth rate-dependent green fluorescence detectable at the single-cell level. The single-cell ribosomal contents were very heterogeneous, as determined by quantitative hybridization with fluorescently labeled rRNA probes in P. putida cells extracted from the rhizosphere of 1-day-old barley seedlings grown under sterile conditions. After this, cells extracted from the root system had ribosomal contents similar to those found in starved cells. There was a significant decrease in the ribosomal content of P. putida cells when bacteria were introduced into nonsterile bulk or rhizosphere soil, and the Gfp monitoring system was not induced in cells extracted from either of the two soil systems. The monitoring system used permitted nondestructive in situ detection of fast-growing bacterial microcolonies on the sloughing root sheath cells of 1- and 2-day-old barley seedlings grown under sterile conditions, which demonstrated that it may be possible to use the unstable Gfp marker for studies of transient gene expression in plant-microbe systems.

摘要

通过监测核糖体含量和合成速率,在单细胞水平上估计了定殖于大麦幼苗根际的恶臭假单胞菌细胞的生长活性。核糖体合成通过一个系统进行监测,该系统包括将大肠杆菌rrnBP1核糖体启动子与编码绿色荧光蛋白(Gfp)不稳定变体的基因融合。在携带插入染色体的该系统的恶臭假单胞菌菌株中,Gfp表达强烈依赖于菌株的生长阶段和生长速率,以>或 = 0.17 h(-1)的速率指数生长的细胞发出依赖于生长速率的绿色荧光,可在单细胞水平检测到。通过与从无菌条件下生长的1日龄大麦幼苗根际提取的恶臭假单胞菌细胞中荧光标记的rRNA探针进行定量杂交测定,单细胞核糖体含量非常不均一。此后,从根系提取的细胞的核糖体含量与饥饿细胞中的相似。当将细菌引入非无菌的大量土壤或根际土壤时,恶臭假单胞菌细胞的核糖体含量显著下降,并且在从这两种土壤系统中提取的细胞中未诱导Gfp监测系统。所使用的监测系统允许对无菌条件下生长的1日龄和2日龄大麦幼苗脱落根鞘细胞上快速生长的细菌微菌落进行非破坏性原位检测,这表明使用不稳定的Gfp标记物研究植物 - 微生物系统中的瞬时基因表达是可能的。

相似文献

2
Distribution of bacterial growth activity in flow-chamber biofilms.
Appl Environ Microbiol. 1999 Sep;65(9):4108-17. doi: 10.1128/AEM.65.9.4108-4117.1999.
4
A bioluminescent derivative of Pseudomonas putida KT2440 for deliberate release into the environment.
FEMS Microbiol Ecol. 2000 Dec 1;34(2):91-102. doi: 10.1111/j.1574-6941.2000.tb00758.x.
5
Desiccation-induced viable but nonculturable state in Pseudomonas putida KT2440, a survival strategy.
PLoS One. 2019 Jul 19;14(7):e0219554. doi: 10.1371/journal.pone.0219554. eCollection 2019.
6
Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley.
Microb Ecol. 2010 Aug;60(2):381-93. doi: 10.1007/s00248-010-9720-8. Epub 2010 Jul 20.
7
Detection of recombinant Pseudomonas putida in the wheat rhizosphere by fluorescence in situ hybridization targeting mRNA and rRNA.
Appl Microbiol Biotechnol. 2008 Jun;79(3):511-8. doi: 10.1007/s00253-008-1438-x. Epub 2008 Apr 4.
8
Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere.
Appl Environ Microbiol. 2001 Dec;67(12):5761-70. doi: 10.1128/AEM.67.12.5761-5770.2001.
9
Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat.
Appl Environ Microbiol. 2001 Aug;67(8):3371-8. doi: 10.1128/AEM.67.8.3371-3378.2001.

引用本文的文献

1
2
Genetic Circuit Design in Rhizobacteria.
Biodes Res. 2022 Sep 1;2022:9858049. doi: 10.34133/2022/9858049. eCollection 2022.
3
Transcriptional organization and regulation of the K1 type VI secretion system gene cluster.
Microbiology (Reading). 2023 Jan;169(1). doi: 10.1099/mic.0.001295.
4
Spatio-Temporal Variation of Assemblages at DNA and cDNA Levels in the Tropical Estuarine and Coastal Waters.
Front Microbiol. 2022 Mar 3;13:837037. doi: 10.3389/fmicb.2022.837037. eCollection 2022.
5
Effects of Ocean Acidification on Resident and Active Microbial Communities of .
Front Microbiol. 2021 Nov 25;12:707674. doi: 10.3389/fmicb.2021.707674. eCollection 2021.
7
Guild Composition of Root-Associated Bacteria Changes with Increased Soil Contamination.
Microb Ecol. 2019 Aug;78(2):416-427. doi: 10.1007/s00248-019-01326-6. Epub 2019 Jan 30.
8
Dual Transcriptomics of Host-Pathogen Interaction of Cystic Fibrosis Isolate PASS1 With Zebrafish.
Front Cell Infect Microbiol. 2018 Nov 22;8:406. doi: 10.3389/fcimb.2018.00406. eCollection 2018.
9
Modulation of Active Gut Microbiota by GG in a Diet Induced Obesity Murine Model.
Front Microbiol. 2018 Apr 10;9:710. doi: 10.3389/fmicb.2018.00710. eCollection 2018.
10
Microbial rRNA Synthesis and Growth Compared through Quantitative Stable Isotope Probing with HO.
Appl Environ Microbiol. 2018 Apr 2;84(8). doi: 10.1128/AEM.02441-17. Print 2018 Apr 15.

本文引用的文献

1
The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type.
Appl Environ Microbiol. 1996 Jul;62(7):2449-56. doi: 10.1128/aem.62.7.2449-2456.1996.
4
Bacterial growth on surfaces: automated image analysis for quantification of growth rate-related parameters.
Appl Environ Microbiol. 1995 Feb;61(2):741-8. doi: 10.1128/aem.61.2.741-748.1995.
5
Viability of indigenous soil bacteria assayed by respiratory activity and growth.
Appl Environ Microbiol. 1994 Aug;60(8):2869-75. doi: 10.1128/aem.60.8.2869-2875.1994.
6
Use of Bioluminescence Markers To Detect Pseudomonas spp. in the Rhizosphere.
Appl Environ Microbiol. 1991 Dec;57(12):3641-4. doi: 10.1128/aem.57.12.3641-3644.1991.
7
DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community.
Appl Environ Microbiol. 1988 Mar;54(3):703-711. doi: 10.1128/aem.54.3.703-711.1988.
9
Molecular tools for study of biofilm physiology.
Methods Enzymol. 1999;310:20-42. doi: 10.1016/s0076-6879(99)10004-1.
10
Distribution of bacterial growth activity in flow-chamber biofilms.
Appl Environ Microbiol. 1999 Sep;65(9):4108-17. doi: 10.1128/AEM.65.9.4108-4117.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验