Suppr超能文献

有序分类数据建模:最新进展与未来挑战。

Modelling ordered categorical data: recent advances and future challenges.

作者信息

Agresti A

机构信息

Department of Statistics, University of Florida, Gainesville, Florida 32611-8545, USA.

出版信息

Stat Med. 1999;18(17-18):2191-207. doi: 10.1002/(sici)1097-0258(19990915/30)18:17/18<2191::aid-sim249>3.0.co;2-m.

Abstract

This article summarizes recent advances in the modelling of ordered categorical (ordinal) response variables. We begin by reviewing some models for ordinal data introduced in the literature in the past 25 years. We then survey recent extensions of these models and related methodology for special types of applications, such as for repeated measurement and other forms of clustering. We also survey other aspects of ordinal modelling, such as small-sample analyses, power and sample size considerations, and availability of software. Throughout, we suggest problem areas for future research and we highlight challenges for statisticians who deal with ordinal data.

摘要

本文总结了有序分类(序数)响应变量建模的最新进展。我们首先回顾过去25年文献中介绍的一些序数数据模型。然后,我们调查这些模型的最新扩展以及针对特殊类型应用(如重复测量和其他形式的聚类)的相关方法。我们还调查序数建模的其他方面,如小样本分析、功效和样本量考虑以及软件可用性。在整个过程中,我们提出了未来研究的问题领域,并强调了处理序数数据的统计学家所面临的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验