Suppr超能文献

多频类别响度标度的参数贝叶斯自适应方法。

Toward parametric Bayesian adaptive procedures for multi-frequency categorical loudness scaling.

机构信息

Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd Street, Seattle, Washington 98105, USA.

Boys Town National Research Hospital, Omaha, Nebraska 68131, USA.

出版信息

J Acoust Soc Am. 2024 Jul 1;156(1):262-277. doi: 10.1121/10.0026592.

Abstract

A series of Bayesian adaptive procedures to estimate loudness growth across a wide frequency range from individual listeners was developed, and these procedures were compared. Simulation experiments were conducted based on multinomial psychometric functions for categorical loudness scaling across ten test frequencies estimated from 61 listeners with normal hearing and 87 listeners with sensorineural hearing loss. Adaptive procedures that optimized the stimulus selection based on the interim estimates of two types of category-boundary models were tested. The first type of model was a phenomenological model of category boundaries adopted from previous research studies, while the other type was a data-driven model derived from a previously collected set of categorical loudness scaling data. An adaptive procedure without Bayesian active learning was also implemented. Results showed that all adaptive procedures provided convergent estimates of the loudness category boundaries and equal-loudness contours between 250 and 8000 Hz. Performing post hoc model fitting, using the data-driven model, on the collected data led to satisfactory accuracies, such that all adaptive procedures tested in the current study, independent of modeling approach and stimulus-selection rules, were able to provide estimates of the equal-loudness-level contours between 20 and 100 phons with root-mean-square errors typically under 6 dB after 100 trials.

摘要

开发了一系列贝叶斯自适应程序,用于从个体听众中估计宽频率范围内的响度增长,并对这些程序进行了比较。基于类别响度标度的多项心理物理函数,针对 61 名正常听力和 87 名感音神经性听力损失听众的十个测试频率进行了模拟实验。测试了基于两种类型的边界模型的中间估计值优化刺激选择的自适应程序。第一种边界模型是从先前的研究中采用的类别边界现象学模型,而另一种边界模型是从先前收集的一组类别响度标度数据中得出的数据驱动模型。还实现了没有贝叶斯主动学习的自适应程序。结果表明,所有自适应程序都提供了 250 至 8000 Hz 之间的响度类别边界和等响曲线的收敛估计值。对收集的数据进行事后模型拟合,使用数据驱动模型,得到了令人满意的准确性,使得当前研究中测试的所有自适应程序,无论建模方法和刺激选择规则如何,都能够在 100 次试验后,以通常低于 6dB 的均方根误差提供 20 至 100 分贝等响级轮廓的估计值。

相似文献

5
Ginkgo biloba for tinnitus.银杏叶治疗耳鸣。
Cochrane Database Syst Rev. 2022 Nov 16;11(11):CD013514. doi: 10.1002/14651858.CD013514.pub2.
8
Eliciting adverse effects data from participants in clinical trials.从临床试验参与者中获取不良反应数据。
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.

本文引用的文献

7
Toward Routine Assessments of Auditory Filter Shape.迈向听觉滤波器形状的常规评估。
J Speech Lang Hear Res. 2019 Feb 26;62(2):442-455. doi: 10.1044/2018_JSLHR-H-18-0092.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验