Molenberghs G, Goetghebeur E J, Lipsitz S R, Kenward M G, Lesaffre E, Michiels B
Biostatistics, Limburgs Universitair Centrum, B3590 Diepenbeek, Belgium.
Stat Med. 1999;18(17-18):2449-64. doi: 10.1002/(sici)1097-0258(19990915/30)18:17/18<2449::aid-sim268>3.0.co;2-w.
Fitting models to incomplete categorical data requires more care than fitting models to the complete data counterparts, not only in the setting of missing data that are non-randomly missing, but even in the familiar missing at random setting. Various aspects of this point of view have been considered in the literature. We review it using data from a multi-centre trial on the relief of psychiatric symptoms. First, it is shown how the usual expected information matrix (referred to as naive information) is biased even under a missing at random mechanism. Second, issues that arise under non-random missingness assumptions are illustrated. It is argued that at least some of these problems can be avoided using contextual information.
将模型拟合到不完整的分类数据比将模型拟合到完整数据的对应情况需要更多的注意,不仅在非随机缺失的缺失数据设置中如此,甚至在常见的随机缺失设置中也是如此。文献中已经考虑了这一观点的各个方面。我们使用一项关于缓解精神症状的多中心试验的数据对其进行综述。首先,展示了即使在随机缺失机制下,通常的期望信息矩阵(称为朴素信息)是如何产生偏差的。其次,阐述了在非随机缺失假设下出现的问题。有人认为,使用上下文信息至少可以避免其中一些问题。