Suppr超能文献

对具有MAR缺失值的纵向分类数据的分析方法评估。

An appraisal of methods for the analysis of longitudinal categorical data with MAR drop-outs.

作者信息

O'Hara Hines R J, Hines W G S

机构信息

Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada.

出版信息

Stat Med. 2005 Dec 15;24(23):3549-63. doi: 10.1002/sim.2210.

Abstract

A number of methods for analysing longitudinal ordinal categorical data with missing-at-random drop-outs are considered. Two are maximum-likelihood methods (MAXLIK) which employ marginal global odds ratios to model associations. The remainder use weighted or unweighted generalized estimating equations (GEE). Two of the GEE use Cholesky-decomposed standardized residuals to model the association structure, while another three extend methods developed for longitudinal binary data in which the association structures are modelled using either Gaussian estimation, multivariate normal estimating equations or conditional residuals. Simulated data sets were used to discover differences among the methods in terms of biases, variances and convergence rates when the association structure is misspecified. The methods were also applied to a real medical data set. Two of the GEE methods, referred to as Cond and ML-norm in this paper and by their originators, were found to have relatively good convergence rates and mean squared errors for all sample sizes (80, 120, 300) considered, and one more, referred to as MGEE in this paper and by its originators, worked fairly well for all but the smallest sample size, 80.

摘要

本文考虑了多种用于分析具有随机缺失值的纵向有序分类数据的方法。其中两种是最大似然法(MAXLIK),它们使用边际全局优势比来建模关联。其余方法使用加权或未加权的广义估计方程(GEE)。其中两种GEE方法使用乔列斯基分解的标准化残差来建模关联结构,另外三种则扩展了为纵向二元数据开发的方法,在这些方法中,关联结构使用高斯估计、多元正态估计方程或条件残差进行建模。当关联结构指定错误时,使用模拟数据集来发现这些方法在偏差、方差和收敛速度方面的差异。这些方法还应用于一个真实的医学数据集。本文及原作者将两种GEE方法分别称为Cond和ML-norm,发现在所有考虑的样本量(80、120、300)下,它们都具有相对较好的收敛速度和均方误差,还有一种方法,本文及原作者将其称为MGEE,除了最小的样本量80外,在其他样本量下效果都相当不错。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验