Suppr超能文献

关于二元生存函数的非参数最大似然估计

On non-parametric maximum likelihood estimation of the bivariate survivor function.

作者信息

Prentice R L

机构信息

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, MP-1002, P.O. Box 19024, Seattle, WA 98109-1024, USA.

出版信息

Stat Med. 1999;18(17-18):2517-27. doi: 10.1002/(sici)1097-0258(19990915/30)18:17/18<2517::aid-sim273>3.0.co;2-f.

Abstract

The likelihood function for the bivariate survivor function F, under independent censorship, is maximized to obtain a non-parametric maximum likelihood estimator &Fcirc;. &Fcirc; may or may not be unique depending on the configuration of singly- and doubly-censored pairs. The likelihood function can be maximized by placing all mass on the grid formed by the uncensored failure times, or half lines beyond the failure time grid, or in the upper right quadrant beyond the grid. By accumulating the mass along lines (or regions) where the likelihood is flat, one obtains a partially maximized likelihood as a function of parameters that can be uniquely estimated. The score equations corresponding to these point mass parameters are derived, using a Lagrange multiplier technique to ensure unit total mass, and a modified Newton procedure is used to calculate the parameter estimates in some limited simulation studies. Some considerations for the further development of non-parametric bivariate survivor function estimators are briefly described.

摘要

在独立删失情况下,通过最大化二元生存函数F的似然函数来获得非参数最大似然估计量&Fcirc;。根据单删失和双删失对的配置,&Fcirc;可能是唯一的,也可能不是唯一的。似然函数可以通过将所有质量置于由未删失失效时间形成的网格上,或失效时间网格之外的半直线上,或网格之外的右上象限中来最大化。通过沿着似然平坦的线(或区域)累积质量,得到作为可唯一估计参数的函数的部分最大化似然。使用拉格朗日乘数技术确保总质量为1,推导与这些点质量参数相对应的得分方程,并在一些有限的模拟研究中使用改进的牛顿程序来计算参数估计值。简要描述了非参数二元生存函数估计量进一步发展的一些考虑因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验