Park Yongseok, Taylor Jeremy M G, Kalbfleisch John D
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109-2029, U.S.A.
Biometrika. 2012 Jun;99(2):327-343. doi: 10.1093/biomet/ass006.
In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time by the estimates of the survivor functions subject to constraints applied at time only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in , and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method.
在本文中,我们考虑当各组受到随机序约束时,从带有右删失数据的观测组中估计生存函数。已经提出了许多方法和算法来在这种限制下估计分布函数,但当观测值被删失时,没有一种方法具有完全令人满意的性质。我们提出了一种逐点约束非参数极大似然估计量,它在每个时刻由仅在该时刻应用约束的生存函数估计值定义。我们还提出了一种获得该估计量的有效方法。每个受约束生存函数的估计量被证明在时间上是非增的,并建立了其一致性和渐近分布。一项模拟研究表明,与其他估计量相比,它具有更好的小样本和大样本性质。一个使用前列腺癌数据的例子说明了该方法。