Suppr超能文献

二元生存函数的自洽非参数最大似然估计器

Self-Consistent Nonparametric Maximum Likelihood Estimator of the Bivariate Survivor Function.

作者信息

Prentice R L

机构信息

Fred Hutchinson Cancer Research Center and University of Washington, Seattle, Washington, United States

出版信息

Biometrika. 2014 Sep;101(3):505-518. doi: 10.1093/biomet/asu010.

Abstract

As usually formulated the nonparametric likelihood for the bivariate survivor function is over-parameterized, resulting in uniqueness problems for the corresponding nonparametric maximum likelihood estimator. Here the estimation problem is redefined to include parameters for marginal hazard rates, and for double failure hazard rates only at informative uncensored failure time grid points where there is pertinent empirical information. Double failure hazard rates at other grid points in the risk region are specified rather than estimated. With this approach the nonparametric maximum likelihood estimator is unique, and can be calculated using a two-step procedure. The first step involves setting aside all doubly censored observations that are interior to the risk region. The nonparametric maximum likelihood estimator from the remaining data turns out to be the Dabrowska (1988) estimator. The omitted doubly censored observations are included in the procedure in the second stage using self-consistency, resulting in a non-iterative nonpara-metric maximum likelihood estimator for the bivariate survivor function. Simulation evaluation and asymptotic distributional results are provided. Moderate sample size efficiency for the survivor function nonparametric maximum likelihood estimator is similar to that for the Dabrowska estimator as applied to the entire dataset, while some useful efficiency improvement arises for corresponding distribution function estimator, presumably due to the avoidance of negative mass assignments.

摘要

按照通常的公式化表述,二元生存函数的非参数似然函数存在参数过多的问题,这导致相应的非参数极大似然估计器出现唯一性问题。在此,重新定义估计问题,使其包含边际风险率的参数,并且仅在存在相关经验信息的信息性未删失失效时间网格点处包含双重失效风险率。风险区域中其他网格点处的双重失效风险率是指定的而非估计的。采用这种方法,非参数极大似然估计器是唯一的,并且可以使用两步法进行计算。第一步涉及搁置风险区域内部的所有双重删失观测值。剩余数据的非参数极大似然估计器结果就是达布罗夫斯卡(1988年)估计器。在第二阶段,利用自一致性将省略的双重删失观测值纳入该过程,从而得到二元生存函数的非迭代非参数极大似然估计器。提供了模拟评估和渐近分布结果。生存函数非参数极大似然估计器在中等样本量时的效率与应用于整个数据集的达布罗夫斯卡估计器相似,而相应分布函数估计器则出现了一些有用的效率提升,这大概是由于避免了负质量分配。

相似文献

2
On non-parametric maximum likelihood estimation of the bivariate survivor function.关于二元生存函数的非参数最大似然估计
Stat Med. 1999;18(17-18):2517-27. doi: 10.1002/(sici)1097-0258(19990915/30)18:17/18<2517::aid-sim273>3.0.co;2-f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验